586
Views
43
CrossRef citations to date
0
Altmetric
Review Articles

Modeling better in vitro models for the prediction of nanoparticle toxicity: a review

, &
Pages 1-17 | Received 26 May 2020, Accepted 21 Sep 2020, Published online: 12 Oct 2020

References

  • An F, Chen N, Conlon WJ, Hachey JS, Xin J, Aras O, Rodriguez EA, Ting R. 2020. Small ultra-red fluorescent protein nanoparticles as exogenous probes for noninvasive tumor imaging in vivo. Int J Biol Macromol. 153:100–106.
  • Ashok A, Choudhury D, Fang Y, Hunziker W. 2020. Towards manufacturing of human organoids. Biotechnol Adv. 39:107460.
  • Astashkina AI, Jones CF, Thiagarajan G, Kurtzeborn K, Ghandehari H, Brooks BD, Grainger DW. 2014. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials. 35(24):6323–6331.
  • Bae S-H, Yu J, Lee TG, Choi S-J. 2018. Protein food matrix–ZnO nanoparticle interactions affect protein conformation, but may not be biological responses. Int J Mol Sci. 19(12):3926.
  • Bai C, Tang M. 2020. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol. 40(1):37–63.
  • Bai X, Xu M, Liu S, Hu G. 2018. Computational investigations of the interaction between the cell membrane and nanoparticles coated with a pulmonary surfactant. ACS Appl Mater Interfaces. 10(24):20368–20376.
  • Barbalinardo M, Caicci F, Cavallini M, Gentili D. 2018. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small. 14(34):e1801219.
  • Beyeler S, Chortarea S, Rothen-Rutishauser B, Petri-Fink A, Wick P, Tschanz SA, von Garnier C, Blank F. 2018. Acute effects of multi-walled carbon nanotubes on primary bronchial epithelial cells from COPD patients. Nanotoxicology. 12(7):699–711.
  • Biola-Clier M, Beal D, Caillat S, Libert S, Armand L, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. 2017. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis. 32(1):161–172.
  • Cai L, Xu J, Yang Z, Tong R, Dong Z, Wang C, Leong KW. 2020. Engineered biomaterials for cancer immunotherapy. MedComm. 1(1):35–46.
  • Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang Y-J, Chapeton K, Patterson B, Yuan Y, He C-S, et al. 2019. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 16(11):1169–1175.
  • Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. 2018. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals. 31(4):457–476.
  • Cao Y, Li J, Liu F, Li X, Jiang Q, Cheng S, Gu Y. 2016. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: a review. Environ Toxicol Pharmacol. 46:206–210.
  • Cao Y, Long J, Liu L, He T, Jiang L, Zhao C, Li Z. 2017. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci. 186:33–42.
  • Cao Y, Luo Y. 2019. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: a review. Toxicol Appl Pharmacol. 385:114801.
  • Casals E, Puntes VF. 2012. Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine. 7(12):1917–1930.
  • Cavallo D, Ciervo A, Fresegna AM, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S, Ursini CL. 2015. Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. J Appl Toxicol. 35(10):1102–1113.
  • Chang S, Zhao X, Li S, Liao T, Long J, Yu Z, Cao Y. 2018. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes. Ecotoxicol Environ Saf. 161:569–577.
  • Cheng X, Tian X, Wu A, Li J, Tian J, Chong Y, Chai Z, Zhao Y, Chen C, Ge C. 2015. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl Mater Interfaces. 7(37):20568–20575.
  • Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C. 2016. Beyond PM2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta. 1860(12):2844–2855.
  • Chen S, Liu Z, Jiang S, Hou H. 2020. Carbonization: a feasible route for reutilization of plastic wastes. Sci Total Environ. 710:136250.
  • Chen G, Shen Y, Li X, Jiang Q, Cheng S, Gu Y, Liu L, Cao Y. 2017. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture. Environ Toxicol Pharmacol. 50:103–110.
  • Chen Z, Wu C, Zhang Z, Wu W, Wang X, Yu Z. 2018. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chem Lett. 29(11):1601–1608.
  • Chia SL, Tay CY, Setyawati MI, Leong DT. 2015. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small. 11(6):702–712.
  • Choi K, Riviere JE, Monteiro-Riviere NA. 2017. Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology. 11(1):64–75.
  • Chortarea S, Barosova H, Clift MJD, Wick P, Petri-Fink A, Rothen-Rutishauser B. 2017. Human asthmatic bronchial cells are more susceptible to subchronic repeated exposures of aerosolized carbon nanotubes at occupationally relevant doses than healthy cells. ACS Nano. 11(8):7615–7625.
  • Corsini E, Ozgen S, Papale A, Galbiati V, Lonati G, Fermo P, Corbella L, Valli G, Bernardoni V, Dell’Acqua M, et al. 2017. Insights on wood combustion generated proinflammatory ultrafine particles (UFP). Toxicol Lett. 266:74–84.
  • Duan G, Kang SG, Tian X, Garate JA, Zhao L, Ge C, Zhou R. 2015. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale. 7(37):15214–15224.
  • Dutta D, Heo I, Clevers H. 2017. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 23(5):393–410.
  • Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH. 2019. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol. 16(1):8.
  • Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. 2017. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact. 278:40–47.
  • Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. 2019. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 14(1):93–126.
  • Fede C, Fortunati I, Weber V, Rossetto N, Bertasi F, Petrelli L, Guidolin D, Signorini R, De Caro R, Albertin G, et al. 2015. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Microvasc Res. 97:147–155.
  • Franchi LP, Manshian BB, de Souza TAJ, Soenen SJ, Matsubara EY, Rosolen JM, Takahashi CS. 2015. Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol in Vitro. 29(7):1319–1331.
  • Gerloff K, Pereira DIA, Faria N, Boots AW, Kolling J, Förster I, Albrecht C, Powell JJ, Schins RPF. 2013. Influence of simulated gastrointestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells. Nanotoxicology. 7(4):353–366.
  • Gogia S, Neelamegham S. 2015. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology. 52(5–6):319–335.
  • Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. 2015. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology. 9(1):25–32.
  • Guo L, Wang T, Chen Z, He N, Chen Y, Yuan T. 2018. Light scattering based analyses of the effects of bovine serum proteins on interactions of magnetite spherical particles with cells. Chinese Chem Lett. 29(8):1291–1295.
  • Hasan S, Sebo P, Osicka R. 2018. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J. 285(23):4343–4358.
  • He T, Long J, Li J, Liu L, Cao Y. 2017. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: interactions with dipalmitoyl phosphatidylcholine (DPPC). Environ Toxicol Pharmacol. 56:233–240.
  • Herzog E, Byrne HJ, Casey A, Davoren M, Lenz A-G, Maier KL, Duschl A, Oostingh GJ. 2009. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol. 234(3):378–390.
  • Hidalgo A, Cruz A, Pérez-Gil J. 2017. Pulmonary surfactant and nanocarriers: toxicity versus combined nanomedical applications. Biochim Biophys Acta Biomembr. 1859(9):1740–1748.
  • Hofmann F, Bläsche R, Kasper M, Barth K. 2015. A co-culture system with an organotypic lung slice and an immortal alveolar macrophage cell line to quantify silica-induced inflammation. PLoS One. 10(1):e0117056.
  • Jia J, Yuan X, Peng X, Yan B. 2019. Cr(VI)/Pb2+ are responsible for PM2.5-induced cytotoxicity in A549 cells while pulmonary surfactant alleviates such toxicity. Ecotoxicol Environ Saf. 172:152–158.
  • Jia YP, Ma BY, Wei XW, Qian ZY. 2017. The in vitro and in vivo toxicity of gold nanoparticles. Chinese Chem Lett. 28(4):691–702.
  • Jiang L, Li Z, Xie Y, Liu L, Cao Y. 2019. Cyanidin chloride modestly protects Caco-2 cells from ZnO nanoparticle exposure probably through the induction of autophagy. Food Chem Toxicol. 127:251–259.
  • Jiang X-Y, Sarsons CD, Gomez-Garcia MJ, Cramb DT, Rinker KD, Childs SJ. 2017. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells. Nanomedicine. 13(3):999–1010.
  • Jiang Y, Gong H, Jiang S, She C, Cao Y. 2020. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids. Sci Total Environ. 748:141384.
  • Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. 2020. Ongoing inflammation enhances the toxicity of engineered nanomaterials: application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol in Vitro. 63:104738.
  • Kasper JY, Feiden L, Hermanns MI, Bantz C, Maskos M, Unger RE, Kirkpatrick CJ. 2015. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: studies on an in vitro air-blood barrier model. Beilstein J Nanotechnol. 6:517–528.
  • Kasper JY, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, Unger RE, Kirkpatrick JC. 2011. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol. 8(1):6.
  • Kendall M, Ding P, Mackay R-M, Deb R, McKenzie Z, Kendall K, Madsen J, Clark H. 2013. Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles. Nanotoxicology. 7(5):963–973.
  • Kim D, Lin Y-S, Haynes CL. 2011. On-chip evaluation of shear stress effect on cytotoxicity of mesoporous silica nanoparticles. Anal Chem. 83(22):8377–8382.
  • Kim JA, Åberg C, Salvati A, Dawson KA. 2011. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol. 7(1):62–68.
  • Lelièvre SA, Kwok T, Chittiboyina S. 2017. Architecture in 3D cell culture: an essential feature for in vitro toxicology. Toxicol in Vitro. 45(3):287–295.
  • Li J, Yang H, Sha S, Li J, Zhou Z, Cao Y. 2019. Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: influence of cell types and pulmonary surfactant component DPPC. Ecotoxicol Environ Saf. 186:109770.
  • Lichtenstein D, Ebmeyer J, Knappe P, Juling S, Böhmert L, Selve S, Niemann B, Braeuning A, Thünemann AF, Lampen A. 2015. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biol Chem. 396(11):1255–1264.
  • Lin J, Jiang Y, Luo Y, Guo H, Huang C, Peng J, Cao Y. 2020. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. J Hazard Mater. 392:122286.
  • Liu J, Chen C, Zhao Y. 2019. Progress and prospects of graphdiyne-based materials in biomedical applications. Adv Mater Weinheim. 31(42):e1804386.
  • Liu N, Tang M, Ding J. 2020. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere. 245:125624.
  • Liu T, Liu Z. 2018. 2D MoS2 nanostructures for biomedical applications. Adv Healthc Mater. 7(8):e1701158.
  • Long J, Li X, Kang Y, Ding Y, Gu Z, Cao Y. 2018. Internalization, cytotoxicity, oxidative stress and inflammation of multi-walled carbon nanotubes in human endothelial cells: influence of pre-incubation with bovine serum albumin. RSC Adv. 8(17):9253–9260.
  • Martirosyan A, Grintzalis K, Polet M, Laloux L, Schneider Y-J. 2016. Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Toxicol Lett. 253:36–45.
  • McClements DJ, Xiao H, Demokritou P. 2017. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci. 246:165–180.
  • McKenzie Z, Kendall M, Mackay R-M, Whitwell H, Elgy C, Ding P, Mahajan S, Morgan C, Griffiths M, Clark H, et al. 2015. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles. Nanotoxicology. 9(8):952–962.
  • Michalkova H, Skubalova Z, Sopha H, Strmiska V, Tesarova B, Dostalova S, Svec P, Hromadko L, Motola M, Macak JM, et al. 2020. Complex cytotoxicity mechanism of bundles formed from self-organised 1-D anodic TiO2 nanotubes layers. J Hazard Mater. 388:122054.
  • Miclăuş T, Beer C, Chevallier J, Scavenius C, Bochenkov VE, Enghild JJ, Sutherland DS. 2016. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun. 7:11770.
  • Miller MR, Newby DE. 2020. Air pollution and cardiovascular disease: car sick. Cardiovasc Res. 116(2):279–294.
  • Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, et al. 2014. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 88(11):1939–1964.
  • Møller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, Danielsen PH, Loft S. 2011. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol. 41(4):339–368.
  • Moratin H, Scherzad A, Gehrke T, Ickrath P, Radeloff K, Kleinsasser N, Hackenberg S. 2018. Toxicological characterization of ZnO nanoparticles in malignant and non-malignant cells. Environ Mol Mutagen. 59(3):247–259.
  • Mousseau F, Puisney C, Mornet S, Borgne RL, Vacher A, Airiau M, Baeza-Squiban A, Berret J-F. 2017. Supported pulmonary surfactant bilayers on silica nanoparticles: formulation, stability and impact on lung epithelial cells. Nanoscale. 9(39):14967–14978.
  • Paino IMM, Gonçalves F, Souza FL, Zucolotto V. 2016. Zinc oxide flower-like nanostructures that exhibit enhanced toxicology effects in cancer cells. ACS Appl Mater Interfaces. 8(48):32699–32705.
  • Park SE, Georgescu A, Huh D. 2019. Organoids-on-a-chip. Science. 364(6444):960–965.
  • Patel P, Kansara K, Senapati VA, Shanker R, Dhawan A, Kumar A. 2016. Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells. Mutagenesis. 31(4):481–490.
  • Pietroiusti A, Bergamaschi E, Campagna M, Campagnolo L, De Palma G, Iavicoli S, Leso V, Magrini A, Miragoli M, Pedata P, et al. 2017. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group. Part Fibre Toxicol. 14:47.
  • Qiao Y, An J, Ma L. 2013. Single cell array based assay for in vitro genotoxicity study of nanomaterials. Anal Chem. 85(8):4107–4112.
  • Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. 2019. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 11(1):e1527.
  • Roshini A, Jagadeesan S, Cho Y-J, Lim J-H, Choi KH. 2017. Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. Mater Sci Eng C Mater Biol Appl. 81:551–560.
  • Sambale F, Lavrentieva A, Stahl F, Blume C, Stiesch M, Kasper C, Bahnemann D, Scheper T. 2015. Three dimensional spheroid cell culture for nanoparticle safety testing. J Biotechnol. 205:120–129.
  • Sarkar A, Sil PC. 2014. Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: role of quercetin. Food Chem Toxicol. 71:106–115.
  • Sasidharan A, Chandran P, Menon D, Raman S, Nair S, Koyakutty M. 2011. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale. 3(9):3657–3669.
  • Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K, Perez-Padilla R, Rice MB, Riojas-Rodriguez H, Sood A, et al. 2019. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 1: the damaging effects of air pollution. Chest. 155(2):409–416.
  • Shaw CA, Mortimer GM, Deng ZJ, Carter ES, Connell SP, Miller MR, Duffin R, Newby DE, Hadoke PWF, Minchin RF. 2016. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages. Nanotoxicology. 10(7):981–991.
  • Susewind J, de Souza Carvalho-Wodarz C, Repnik U, Collnot E-M, Schneider-Daum N, Griffiths GW, Lehr C-M. 2016. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology. 10(1):53–62.
  • Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, Schwander S, Zhang JJ, Shaffer MSP, Chung KF, et al. 2016. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids Surf B Biointerfaces. 145:167–175.
  • Tang J, Liu Z, Ji F, Li Y, Liu J, Song J, Li J, Zhou J. 2015. The role of the cell cycle in the cellular uptake of folate-modified poly(L-amino acid) micelles in a cell population. Nanoscale. 7(48):20397–20404.
  • Theodorou IG, Ruenraroengsak P, Gow A, Schwander S, Zhang JJ, Chung KF, Tetley TD, Ryan MP, Porter AE. 2016. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology. 10(9):1351–1362.
  • Ude VC, Brown DM, Viale L, Kanase N, Stone V, Johnston HJ. 2017. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part Fibre Toxicol. 14(1):31.
  • Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S. 2014. Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol. 34(11):1209–1219.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A, et al. 2019. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570(7762):523–527.
  • Vila L, García-Rodríguez A, Cortés C, Velázquez A, Xamena N, Sampayo-Reyes A, Marcos R, Hernández A. 2018. Effects of cerium oxide nanoparticles on differentiated/undifferentiated human intestinal Caco-2 cells. Chem Biol Interact. 283:38–46.
  • Wang Y, Yuan L, Yao C, Ding L, Li C, Fang J, Sui K, Liu Y, Wu M. 2014. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale. 6(24):15333–15342.
  • Weldon BA, Park JJ, Hong S, Workman T, Dills R, Lee JH, Griffith WC, Kavanagh TJ, Faustman EM. 2018. Using primary organotypic mouse midbrain cultures to examine developmental neurotoxicity of silver nanoparticles across two genetic strains. Toxicol Appl Pharmacol. 354:215–224.
  • Winzen S, Schoettler S, Baier G, Rosenauer C, Mailaender V, Landfester K, Mohr K. 2015. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale. 7(7):2992–3001.
  • Wu C, Luo Y, Liu L, Xie Y, Cao Y. 2019. Toxicity of combined exposure of ZnO nanoparticles (NPs) and myricetin to Caco-2 cells: changes of NP colloidal aspects, NP internalization and the apoptosis-endoplasmic reticulum stress pathway. Toxicol Res. 8(5):613–620.
  • Wu T, Xu H, Liang X, Tang M. 2019. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere. 221:708–726.
  • Wu W-T, Li L-A, Tsou T-C, Wang S-L, Lee H-L, Shih T-S, Liou S-H. 2019. Longitudinal follow-up of health effects among workers handling engineered nanomaterials: a panel study. Environ Health. 18:107.
  • Xiao W, Gao H. 2018. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm. 552(1–2):328–339.
  • Xue Y, Wang J, Huang Y, Gao X, Kong L, Zhang T, Tang M. 2018. Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Hum Exp Toxicol. 37(12):1293–1309.
  • Yang Q, Wang M, Sun Y, Peng S, Ding Y, Cao Y. 2019. Pre-incubated with BSA-complexed free fatty acids alters ER stress/autophagic gene expression by carboxylated multi-walled carbon nanotube exposure in THP-1 macrophages. Chinese Chem Lett. 30(6):1224–1228.
  • Yang Y, Westerhoff P. 2014. Presence in, and release of, nanomaterials from consumer products. Adv Exp Med Biol. 811:1–17.
  • Yu L, Tian X, Gao D, Lang Y, Zhang X-X, Yang C, Gu M-M, Shi J, Zhou P-K, Shang Z-F. 2019. Oral administration of hydroxylated-graphene quantum dots induces intestinal injury accompanying the loss of intestinal stem cells and proliferative progenitor cells. Nanotoxicology. 13(10):1409–1421.
  • Zhang H, Hua D, Huang C, Samal SK, Xiong R, Sauvage F, Braeckmans K, Remaut K, De Smedt SC. 2020. Materials and technologies to combat counterfeiting of pharmaceuticals: current and future problem tackling. Adv Mater. 32(11):1905486.
  • Zhang T, Tang M, Yao Y, Ma Y, Pu Y. 2019. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity. Int J Nanomedicine. 14:993–1009.
  • Zhang Z, Zhang R, Xiao H, Bhattacharya K, Bitounis D, Demokritou P, McClements DJ. 2019. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact. 13:13–25.
  • Zong L, Li X, Wang H, Cao Y, Yin L, Li M, Wei Z, Chen D, Pu X, Han J. 2017. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-l-aspartate) (PEG-PBLA). Int J Pharm. 531(1):108–117.
  • Zhao L, Zhu Y, Chen Z, Xu H, Zhou J, Tang S, Xu Z, Kong F, Li X, Zhang Y, et al. 2018. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology. 12(2):169–184.
  • Zhao S, Nivetha R, Qiu Y, Guo X. 2020. Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications. Chinese Chem Lett. 31(4):947–952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.