468
Views
4
CrossRef citations to date
0
Altmetric
Research Article

pH modulating agar dressing for chronic wounds

, , , &
Pages 379-393 | Received 01 Aug 2021, Accepted 27 Feb 2022, Published online: 25 Mar 2022

References

  • Tardáguila-García, A.; García-Morales, E.; García-Alamino, J. M.; Álvaro-Afonso, F. J.; Molines-Barroso, R. J.; Lázaro-Martínez, J. L. Metalloproteinases in Chronic and Acute Wounds: A Systematic Review and Meta-analysis. Wound Repair Regener. 2019 Jul, 27(4), 415–420. Blackwell Publishing Inc. DOI: 10.1111/wrr.12717.
  • Krejner, A.; Litwiniuk, M., and Grzela, T. Matrix Metalloproteinases in the Wound Microenvironment: Therapeutic Perspectives. Chronic Wound Care Manag. Res 2016, 3, 29–39.
  • Ayuk, S. M.; Abrahamse, H.; Houreld, N. N. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in Relation to Photobiomodulation. J. Diabetes Res. 2016, 2016, 2897656. DOI: 10.1155/2016/2897656.
  • Visse, R.; Nagase, H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ. Res. 2003 May, 92(8), 827–839. Circ Res. DOI: 10.1161/01.RES.0000070112.80711.3D.
  • Frykberg, R. G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care. 2015 Sep, 4(9), 560–582. DOI: 10.1089/wound.2015.0635.
  • Dunnill, C.; Patton, T., Brennan, J.; et al. Reactive Oxygen Species (ROS) and Wound Healing: The Functional Role of ROS and Emerging ROS-modulating Technologies for Augmentation of the Healing Process. Int. Wound J. 2017 Feb, 14(1), 89–96. DOI: 10.1111/iwj.12557.
  • Rohani, M. G.; Parks, W. C. Matrix Remodeling by MMPs during Wound Repair. Matrix Biol. 2015 May, 44–46, 113–121. Elsevier. DOI: 10.1016/j.matbio.2015.03.002.
  • Riggs, A. F. The Bohr Effect. Annu. Rev. Physiol. 1988 Oct, 50(1), 181–204. DOI: 10.1146/annurev.ph.50.030188.001145.
  • Jones, E. M.; Cochrane, C. A.; Percival, S. L. The Effect of pH on the Extracellular Matrix and Biofilms. Adv. Wound Care. 2015 Jul, 4(7), 431–439. DOI: 10.1089/wound.2014.0538.
  • Do Amaral, S. F.; Scaffa, P. M. C., and Rodrigues, R. D. S.; et al. Dynamic Influence of pH on Metalloproteinase Activity in Human Coronal and Radicular Dentin. Caries Res. 2018, 52(1–2), 113–118.
  • E and Heuss. Die Reaktion des Schweisses beim gesunden Menschen. Monatschr Prakt Dermatol. 1892, 14, 341–343.
  • Pierce, G. F.; Mustoe, T. A., and Lingelbach, J.; ; et al. Platelet-derived Growth Factor and Transforming Growth factor-β Enhance Tissue Repair Activities by Unique Mechanisms. J. Cell Biol. 1989, 109(1), 429–440.
  • Schmid-Wendtner, M. H.; Korting, H. C. The pH of the Skin Surface and Its Impact on the Barrier Function. Skin Pharmacol. Physiol. 2006 Nov, 19(6), 296–302. DOI: 10.1159/000094670.
  • Proksch, E. pH in Nature, Humans and Skin. J. Dermatol. 2018 Sep, 45(9), 1044–1052. DOI: 10.1111/1346-8138.14489.
  • Levin, J.; Maibach, H. Human Skin Buffering Capacity: An Overview. Skin Res. Technol. 2008 May, 14(2), 121–126. DOI: 10.1111/j.1600-0846.2007.00271.x.
  • Schneider, L. A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on Wound-healing: A New Perspective for Wound-therapy? Archives Dermatol. Res. 2007 Feb, 298(9), 413–420. DOI: 10.1007/s00403-006-0713-x.
  • Lampiaho, K.; Kulonen, E. Metabolic Phases during the Development of Granulation Tissue. Biochem. J. 1967, 105(1), 333–341. DOI: 10.1042/bj1050333.
  • Kurabayashi, H.; Tamura, K.; Machida, I.; Kubota, K. Inhibiting Bacteria and Skin pH in Hemiplegia: Effects of Washing Hands with Acidic Mineral Water. Am. J. Phys. Med. Rehabil. 2002, 81(1), 40–46. DOI: 10.1097/00002060-200201000-00007.
  • Hunt, T. K.; Twomey, P.; Zederfeldt, B.; Dunphy, J. E. Respiratory Gas Tensions and pH in Healing Wounds. Am. J. Surg. 1967, 114(2), 302–307. DOI: 10.1016/0002-9610(67)90388-1.
  • Weckroth, M.; Vah, A.; Lauharanta, J., and Sorsa, T. Matrix Metalloproteinases, Gelatinase and Collagenase, in Chroni C Leg Ulcers. J Invest Dermatol. 1996, 106, 1119–24 .
  • GREENER and B. The Effect of pH on Proteolytic Activity in Chronic Wound Fluids and Methods for Determination. 2nd WUWHS Congr. July 2004 Paris, 2004.
  • Sung, J. H.; Hwang, M.-R., and Kim, J. O.; ; ; ; ; ; ; ; et al. Gel Characterisation and in Vivo Evaluation of Minocycline-loaded Wound Dressing with Enhanced Wound Healing Using Polyvinyl Alcohol and Chitosan. Int. J. Pharm. 2010 Jun, 392(1–2), 232–240. DOI: 10.1016/j.ijpharm.2010.03.024.
  • Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. What Is behind the Non-antibiotic Properties of Minocycline? Pharmacol. Res. 2013 Jan, 67(1), 18–30. Academic Press. DOI: 10.1016/j.phrs.2012.10.006.
  • Stechmiller, J.; Cowan, L.; Schultz, G. The Role of Doxycycline as a Matrix Metalloproteinase Inhibitor for the Treatment of Chronic Wounds. Biol. Res. Nurs. 2010 Apr, 11(4), 336–344. DOI: 10.1177/1099800409346333.
  • Schmutz, J. L.; Meaume, S., and Fays, S.; ; et al. Evaluation of the Nano-oligosaccharide Factor Lipido-colloid Matrix in the Local Management of Venous Leg Ulcers: Results of a Randomised, Controlled Trial. Int. Wound J. 2008, 5(2), 172–182.
  • Shrivastava, R.; Janicot, C., and Cucuat, N. ; et al. A New Generation of Topical Chronic Wound Treatments Containing Specific MMP Inhibitors. Chronic Wound Care Manag. Res. 2014 Sep, 1, 31. DOI: 10.2147/CWCMR.S59946.
  • Basavraj S Nagoba, S. S.; Suryawanshi, N. M.; Wadher, B. Acidic Environment and Wound Healing: A Review. Wounds. 2015, 27(1), 5–11.
  • Sloss, J. M.; Cumberland, N.; Milner, S. M. Acetic Acid Used for the Elimination of Pseudomonas Aeruginosa from Burn and Soft Tissue Wounds. J. R. Army Med. Corps. 1993, 139(2), 49–51. DOI: 10.1136/jramc-139-02-04.
  • Nagoba, B. S.; Gandhi, R. C., Wadher, B. J.; et al. Citric Acid Treatment of Severe Electric Burns Complicated by Multiple Antibiotic Resistant Pseudomonas Aeruginosa. Burns. 1998 Aug, 24(5), 481–483. DOI: 10.1016/S0305-4179(98)00052-7.
  • Riggs, A. Mechanism of the Enhancement of the Bohr Effect in Mammalian Hemoglobins by Diphosphoglycerate. Proc. Natl. Acad. Sci. U. S. A. 1971 Sep, 68(9), 2062–2065. DOI: 10.1073/pnas.68.9.2062.
  • Milne, S. D.; Connolly, P. The Influence of Different Dressings on the pH of the Wound Environment. J. Wound Care. 2014 Feb, 23(2), 53–57. DOI: 10.12968/jowc.2014.23.2.53.
  • Tyeb, S.; Shiekh, P. A.; Verma, V.; Kumar, A. Adipose-Derived Stem Cells (Adscs) Loaded Gelatin-Sericin-Laminin Cryogels for Tissue Regeneration in Diabetic Wounds. Biomacromolecules. 2020 Feb, 21(2), 294–304. DOI: 10.1021/acs.biomac.9b01355.
  • Cissell, D. D.; Link, J. M.; Hu, J. C.; Athanasiou, K. A. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich’s Solution Accurately Measures Tissue Collagen Content. Tissue Eng. - Part C Methods. 2017 Apr, 23(4), 243–250. DOI: 10.1089/ten.tec.2017.0018.
  • Verma,S.;Gaganjot;Tripathi, J.;Katiyar, M., and Verma, V. Biodegradable Photolithography Compatible Substrate for Transparent Transient Electronics and Flexible Energy Storage Devices. Appl. Mater. Today. 2018 Dec, 13, 83–90. DOI: 10.1016/j.apmt.2018.08.010.
  • Tyeb, S.; Kumar, N.; Kumar, A.; Verma, V. Flexible Agar-sericin Hydrogel Film Dressing for Chronic Wounds. Carbohydr. Polym. 2018 Nov, 200, 572–582. DOI: 10.1016/j.carbpol.2018.08.030.
  • Awadhiya, A.; Kumar, D.; Verma, V. Crosslinking of Agarose Bioplastic Using Citric Acid. Carbohydr. Polym. 2016 Oct, 151, 60–67. DOI: 10.1016/j.carbpol.2016.05.040.
  • Kouchak, M.; Handali, S.; Naseri Boroujeni, B. Evaluation of the Mechanical Properties and Drug Permeability of Chitosan/Eudragit RL Composite Film. Osong Public Heal. Res. Perspect. 2015, 6(1), 14–19. DOI: 10.1016/j.phrp.2014.12.001.
  • Onuki, Y.; Nishikawa, M.; Morishita, M.; Takayama, K. Development of Photocrosslinked Polyacrylic Acid Hydrogel as an Adhesive for Dermatological Patches: Involvement of Formulation Factors in Physical Properties and Pharmacological Effects. Int. J. Pharm. 2008, 349(1), 47–52. DOI: 10.1016/j.ijpharm.2007.07.021.
  • Harding, K. G. Would Exudate and the Role of Dressings. Int. Wound J. 2008 Mar, 5(s1), iii–12.
  • Cutting, K. F.; Harding, K. G. Criteria for Identifying Wound Infection. J. Wound Care. 1994 Jun, 3(4), 198–201. DOI: 10.12968/jowc.1994.3.4.198.
  • Jones, M. L. Exudate: Friend or Foe? Bri. J. Community Nur. 2014, 19(SUPPL. 6), MA Healthcare Ltd. DOI: 10.12968/bjcn.2014.19.Sup6.S18.
  • Gray, M.; Weir, D. Prevention and Treatment of Moisture-Associated Skin Damage (Maceration) in the Periwound Skin. J. Wound, Ostomy Cont. Nurs. 2007 Mar, 34(2), 153–157. DOI: 10.1097/01.WON.0000264827.80613.05.
  • Panuncialman, J.; Falanga, V. The Science of Wound Bed Preparation. Surg. Clin. North Am. 2009 Jun, 89(3), 611–626. DOI: 10.1016/j.suc.2009.03.009.
  • Iizaka, S.; Sanada, H.; Nakagami, G.; Koyanagi, H.; Konya, C.; Sugama, J. Quantitative Estimation of Exudates Volume for Full-thickness Pressure Ulcers: The ESTimation Method. J. Wound Care. 2011 Oct, 20(10), 453–463. DOI: 10.12968/jowc.2011.20.10.453.
  • Vowden, K.; Vowden, P. Understanding Exudate Management and the Role of Exudate in the Healing Process. Bri. j. community nur. 2003, 8(11 Suppl), 4–13. DOI: 10.12968/bjcn.2003.8.Sup5.12607.
  • Schreml, S.; Szeimies, R.-M., Karrer, S. et al. The Impact of the pH Value on Skin Integrity and Cutaneous Wound Healing. J. Eur. Acad. Dermatology Venereol. 2010 Apr, 24(4), 373–378. DOI: 10.1111/j.1468-3083.2009.03413.x.
  • Panuncialman, J.; Falanga, V. The Science of Wound Bed Preparation. Clin. Plastic Surg. 2007 Oct, 34(4), 621–632. DOI: 10.1016/j.cps.2007.07.003.
  • Wallace, L. A.; Gwynne, L.; Jenkins, T. Challenges and Opportunities of pH in Chronic Wounds. Ther. Delivery. 2019 Dec, 10(11), 719–735. Future Medicine Ltd.
  • Razaq, S.; Wilkins, R. J.; Urban, J. P. G. The Effect of Extracellular pH on Matrix Turnover by Cells of the Bovine Nucleus Pulposus. Eur. Spine J. 2003 Aug, 12(4), 341–349. DOI: 10.1007/s00586-003-0582-3.
  • McCarty, S. M.; Percival, S. L. Proteases and Delayed Wound Healing. Adv. Wound Care. 2013 Oct, 2(8), 438–447. DOI: 10.1089/wound.2012.0370.
  • Dissemond, J., Augustin, M., Dietlein, M.; et al. Efficacy of MMP-inhibiting Wound Dressings in the Treatment of Hard-to-heal Wounds: A Systematic Review. J. Wound Care. 2020 Feb, 29(2), 102–118. MA Healthcare Ltd. DOI: 10.12968/jowc.2020.29.2.102.
  • Nagoba, B. S.; Gandhi, R. C., Wadher, B. J.; ; ; et al. A Simple and Effective Approach for the Treatment of Diabetic Foot Ulcers with Different Wagner Grades. Int. Wound J. 2010 Jun, 7(3), 153–158. DOI: 10.1111/j.1742-481X.2010.00666.x.
  • Power, G.; Moore, Z.; O’Connor, T. Measurement of pH, Exudate Composition and Temperature in Wound Healing: A Systematic Review. J. Wound Care. 2017 Jul, 26(7), 381–397. DOI: 10.12968/jowc.2017.26.7.381.
  • Kruse, C. R., Singh , M., Targosinki, S.; et al. The Effect of pH on Cell Viability, Cell Migration, Cell Proliferation, Wound Closure, and Wound Reepithelialization: In Vitro and in Vivo Study. Wound Repair. Regen. 2017 Mar, 25(2), 260–269. DOI: 10.1111/wrr.12526.
  • Lima, C.C., Pereira, A.P.C., Silva, J.R.F.; et al. Ascorbic Acid for the Healing of Skin Wounds in Rats. Brazilian J. Biol. 2009 Nov, 69(4), 1195–1201. DOI: 10.1590/S1519-69842009000500026.
  • Liu, Y.; Kalén, A.; Risto, O.; Wahlström, O. Fibroblast Proliferation Due to Exposure to a Platelet Concentrate in Vitro Is pH Dependent. Wound Repair. Regen. 2002, 10(5), 336–340. DOI: 10.1046/j.1524-475X.2002.10510.x.
  • Lengheden, A.; Jansson, L. PH Effects on Experimental Wound Healing of Human Fibroblasts in Vitro. Eur. J. Oral Sci. 1995 Jun, 103(3), 148–155. DOI: 10.1111/j.1600-0722.1995.tb00016.x.
  • Park, G.; Oh, D.-S.; Kim, Y.; Park, M.-K. Acceleration of Collagen Breakdown by Extracellular Basic pH in Human Dermal Fibroblasts. Skin Pharmacol. Physiol. 2016 Sep, 29(4), 204–209. DOI: 10.1159/000447016.
  • Phillips, I.; Lobo, A. Z.; Fernandes, R.; Gundara, N. S. Acetic Acid in the Treatment of Superficial Wounds Infected by Pseudomonas Aeruginosa. Lancet. 1968 Jan, 1(7532), 11–14. DOI: 10.1016/S0140-6736(68)90004-4.
  • Nagoba, B. S.; Selkar, S. P.; Wadher, B. J.; Gandhi, R. C. Acetic Acid Treatment of Pseudomonal Wound Infections - A Review. J. Infection Public Health. 2013 Dec, 6(6), 410–415. DOI: 10.1016/j.jiph.2013.05.005.
  • Halstead, F. D.; Rauf, M., and Moiemen, N. S.; et al. The Antibacterial Activity of Acetic Acid against Biofilm-producing Pathogens of Relevance to Burns Patients. PLoS One. 2015 Sep, 10(9), e0136190. DOI: 10.1371/journal.pone.0136190.
  • Bjarnsholt, T.; Alhede, M., and Jensen, P. Ø.; et al. Antibiofilm Properties of Acetic Acid. Adv. Wound Care. 2015 Jul, 4(7), 363–372. DOI: 10.1089/wound.2014.0554.
  • Bushell, F. M. L.; Tonner, P. D.; Jabbari, S.; Schmid, A. K., and Lund, P. A. Synergistic Impacts of Organic Acids and pH on Growth of Pseudomonas Aeruginosa: A Comparison of Parametric and Bayesian Non-parametric Methods to Model Growth. Front. Microbiol. 2019, 10(JAN), 1-15.
  • Salmond, C. V.; Kroll, R. G.; Booth, I. R. The Effect of Food Preservatives on pH Homeostasis in Escherichia Coli. J. Gen. Microbiol. 1984, 130(11), 2845–2850. DOI: 10.1099/00221287-130-11-2845.
  • McDonnell, G.; Russell, A. D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol Rev. 1999 Jan, 12(1), 147–179. DOI: 10.1128/CMR.12.1.147.
  • Hirshfield, I. N.; Terzulli, S.; O’Byrne, C. Weak Organic Acids: A Panoply of Effects on Bacteria. Sci. Prog. 2003 Nov, 86(Pt 4), 245–269. DOI: 10.3184/003685003783238626.
  • Sheu, C. W.; Salomon, D.; Simmons, J. L.; Sreevalsan, T.; Freese, E. Inhibitory Effects of Lipophilic Acids and Related Compounds on Bacteria and Mammalian Cells. ANTIMICROB.AGENTS CHEMOTHER. 1975 Mar, 7(3), 349–363. DOI: 10.1128/AAC.7.3.349.
  • Leveen, H. H., Falk, G., Borek, B.; et al. Chemical Acidification of Wounds. An Adjuvant to Healing and the Unfavorable Action of Alkalinity and Ammonia. Ann. Surg. 1973, 178(6), 745–753.
  • Percival, S. L.; Finnegan, S.; Donelli, G.; Vuotto, C.; Rimmer, S.; Lipsky, B. A. Antiseptics for Treating Infected Wounds: Efficacy on Biofilms and Effect of pH. Crit. Rev. Microbiol. 2016 Mar, 42(2), 293–309. Taylor and Francis Ltd. DOI: 10.3109/1040841X.2014.940495.
  • Slone, W.; Linton, S.; Okel, T.; Corum, L.; Thomas, J. G.; Percival, S. L. The Effect of pH on the Antimicrobial Efficiency of Silver Alginate on Chronic Wound Isolates. J. Am. Col. Certif. Wound Spec. 2010, 2(4), 86–90. DOI: 10.1016/j.jcws.2011.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.