1,757
Views
83
CrossRef citations to date
0
Altmetric
Reviews

Herbal Processing and Extraction Technologies

, , , , &
Pages 305-320 | Received 30 Dec 2013, Accepted 14 Jan 2016, Published online: 29 Feb 2016

REFERENCES

  • Kumoro, A.C. and Hasan, M. (2008) Extraction of herbal components–the case for supercritical fluid extraction. Teknik, 29(3): 180–183.
  • Nadia, M., Nazrun, A., Norazlina, M., Isa, N., Norliza, M., Ima Nirwana, S. (2012) The anti-inflammatory, phytoestrogenic, and antioxidative role of Labisia pumila in prevention of postmenopausal osteoporosis. Adv. Pharmacol. Sci., 2012: 1–7.
  • World Health Organization (WHO). (2003) Traditional Medicine; WHO: Geneva, Switzerland.
  • Gias, U. (1998) Standardization of Herbal Preparation. The Independent, 30: 13.
  • Khan, I.A. and Smillie, T. (2012) Implementing a “quality by design” approach to assure the safety and integrity of botanical dietary supplements. J. Natural Products, 75(9): 1665–1673.
  • Aarts, T. (1998) Industry overview. Nutr. Bus. J., 3(9): 1–5.
  • Nahin, R.L. and National Center for Health Statistics. (2009) Costs of Complementary and Alternative Medicine (CAM) and Frequency of Visits to CAM Practitioners. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD.
  • Frost & Sullivan. (2005) European dietary supplements: Health is wealth. https://www.frost.com/sublib/display-market-insight.do?id=38076249 ( accessed January 15, 2016).
  • Puteh, M. (1999) In a two and half day course of herbal and phytochemical processing. CEPP short course notes Chemical Engineering Pilot Plant, UTM Skudai, Malaysia.
  • BERNAMA. Bernama Local Herbal Industry Registers Annual Sales of RM 4.5 Billion. http://www.bernama.com.my/bernama/v3/news-busines.php?id=150892 ( accessed May 2, 2014).
  • Malaysian National News Agency. Local Herbal Market to Hit RM8 Billion by 2010. http://www.bernama.com.my/bernama/v3/news-busines.php?id=219357 ( accessed May 2, 2014).
  • Chua, S.K. (2008) Monitoring the quality of essential oil from etilingera SP. 4 (Zingiberaceae) by gas chromatography-mass spectrometry (GC-MS): PhD dissertation, Universiti Malaysia: Pahang, Malaysia.
  • Arif, M.T. (2002) Traditional/Complementary Medicine in the Malaysian Healthcare System. Poster presented at the 4th International Conference for Traditional/Complementary Medicine, Sunway Convention Centre, Kuala Lumpur, Indonesia.
  • Lewington, A. (1993) Medicinal Plants and Plant Extracts: A review of their importation into Europe. Traffic International: Cambridge, United Kingdom.
  • Rates, S. (2001) Plants as source of drugs. Toxicon, 39(5): 603–613.
  • Diallo, D., Hveem, B., Mahmoud, M.A., Berge, G., Paulsen, B.S., and Maiga, A. (1999) An ethnobotanical survey of herbal drugs of Gourma district, Mali. Pharm. Biol., 37(1):80–91.
  • Kris-Etherton, P., Lefevre, M., Beecher, G., Gross, M., Keen, C., and Etherton, T. (2004) Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Ann. Rev. Nutr., 24: 511–538.
  • Karimi, E., Jaafar, H.Z., and Ahmad, S. (2013) Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: From microwave obtained extracts. BMC Complement Altern. Med., 24: 13–20.
  • Chua, L.S., Latiff, N.A., Lee, S.Y., Lee, C.T., Sarmidi, M.R., and Aziz, R.A. (2011) Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem., 127(3): 1186–1192.
  • Yamamoto, Y. and Gaynor, R.B. (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin Invest., 107(2): 135–142.
  • Cushnie, T. and Lamb, A.J. (2005) Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26(5): 343–356.
  • Shahidi, F., Janitha, P., and Wanasundara, P. (1992) Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 32(1): 67–103.
  • Wei, H., Tye, L., Bresnick, E., and Birt, D.F. (1990) Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res., 50(3): 499–502.
  • Migliaccio, S. and Anderson, J. (2003) Isoflavones and skeletal health: Are these molecules ready for clinical application? Osteopor. Int., 14(5): 361–368.
  • Tsao, R., and Deng, Z. (2004) Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B, 812(1–2): 85–99.
  • Choi, H.-k., Kim, D.-h., Kim, J.W., Ngadiran, S., Sarmidi, M.R., and Park, C.S. (2010) Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation. J. Biosci. Bioeng., 109(3): 291–296.
  • Norhaiza, M., Maziah, M., and Hakiman, M. (2009) Antioxidative properties of leaf extracts of a popular Malaysian herb. Labisia pumila. J. Med. Plant Res., 3: 217–223.
  • Sparg, S., Light, M., and Van Staden, J. (2004) Biological activities and distribution of plant saponins. J. Ethnopharmacol., 94(2): 219–243.
  • Nocerino, E., Amato, M., Angelo, A., and Izzo, U. (2000) The aphrodisiac and adaptogenic properties of ginseng. J. Fitoterapia, 71: S1–S5.
  • Abdullah, F., Ling, S.K., Man, S., Tan, A.L., Tan, H.P., and Abdullah, Z. (2012) Characterization and identification of Labisia pumila by multi-steps infrared spectroscopy. Vibr. Spec., 62: 200–206.
  • Tapsell, L., Australian Medical Association. (2006) Health Benefits of Herbs and Spices: The Past, the Present, the Future. Australasian Medical Publishing Company, Melbourne, Australia.
  • Diarmuid, J. (2004) Aspirin: The Story of a Wonder Drug. Bloomsbury Publishing: London, UK.
  • Nunn, J.F. (2002) Ancient Egyptian Medicine. University of Oklahoma Press/Red River Books, Oklahoma City, OK.
  • Karimi E., and Jaafar H.Z. (2011) HPLC and GC-MS determination of bioactive compounds in microwave obtained extracts of three varieties of Labisia pumila Benth. Molecules, 16(8): 6791–6805.
  • Karimi, E., Jaafar, H.Z., and Ahmad, S. (2011) Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf, stem and root from different varieties of Labisa pumila Benth. Molecules, 16(6): 4438–4450.
  • Ramlan, A.A., Sivakumar, K., and Chwan, D.Y.F. (2005) Engineering aspects of herbal and phytochemical processing: A Malaysian perspective. http://eprints.utm.my/5583/ ( accessed January 15, 2016).
  • Sim, C., Kumaresan, S., and Sarmidi, M.R. (2004) Mass transfer coefficients of eurycoma longifolia batch extraction process. http://eprints.utm.my/6026/ ( accessed January 16, 2016).
  • Bernardo-Gil, M.G., Roque, R., Roseiro, L.B., Duarte, L.C., Gírio, F., and Esteves, P. (2011) Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J. Supercrit. Fluids, 59: 36–42.
  • Karale Chandrakant, K., Dere Pravin, J., Dhonde, S., Honde Bharat, S., and Kote Amol, P. (2011) A overview of supercritical fluid extraction for herbal drugs. Pharmacologyonline 2:575–596.
  • Eller, F. (2002) Supercritical carbon dioxide extraction of fat. Bus. Brief. Food Technol., 1–4
  • Martinelli, E., Schulz, K., and Mansoori, G.A. (1991) Supercritical fluid extraction/retrograde condensation with applications in biotechnology. In Supercritical Fluid Technology; Bruno, T.J. and Ely, J.F., eds.; CRC Press, Boca Raton, FL, 451–478.
  • Geng, Y., Liu, J., Lv, R., Yuan, J., Lin, Y., and Wang, X. (2007) An efficient method for extraction, separation and purification of eugenol from Eugenia caryophyllata by supercritical fluid extraction and high-speed counter-current chromatography. Sep. Purif. Technol., 57(2): 237–241.
  • Clifford, A.A. (1993) Introduction to supercritical fluid extraction in analytical science. In Supercritical Fluid Extraction and Its Use in Chromatographic Sample Preparation; Westwood, S.A. ed.; CRC Press, Boca Raton, Florida, 1–39.
  • Lang, Q. and Wai, C.M. (2001) Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta, 53(4): 771–782.
  • Reverchon, E., Donsi, G., and Sesti Osseo, L. (1993) Modeling of supercritical fluid extraction from herbaceous matrices. Ind. Eng. Chem. Res., 32(11): 2721–2726.
  • Polesello, S., Lovati, F., Rizzolo, A., and Rovida, C. (1993) Supercritical fluid extraction as a preparative tool for strawberry aroma analysis. J. High Res. Chromatogr., 16(9): 555–559.
  • Dron, A., Guyeru, D.E., Gage, D.A., and Lira, C.T. (1997) Yield and quality of onion flavor oil obtained by supercritical fluid extraction and other methods. J. Food Proc. Eng., 20(2): 107–124.
  • Pan, W.H., Chang, C.-C., Su, T.-T., Lee, F., and Fuh, M.-R.S. (1995) Preparative supercritical fluid extraction of pyrethrin I and II from pyrethrum flower. Talanta, 42(11): 1745–1749.
  • Fuh, M.-R., Pan, W., Hsieh, I., and Chuo, C.-M. (1995) Preparative-scale supercritical fluid extraction of essential oils from Syzygium aromaticum (clove bud). Am. Lab., 27(18): 36–41.
  • Frenich, A.G., Romero-González, R., and del Mar Aguilera-Luiz, M. (2014) Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS. Trends Anal. Chem., 63: 158–169.
  • Marsili, R. and Callahan, D. (1993) Comparison of a liquid solvent extraction technique and supercritical fluid extraction for the determination of α-and β-carotene in vegetables. J. Chromatogr. Sci., 31(10): 422–428.
  • Veggi, P.C., Martinez, J., and Meireles M.A.A. (2013) Fundamentals of Microwave Extraction Microwave-assisted Extraction for Bioactive Compounds; Springer: Berlin, 15–52.
  • Chemat, F., Abert-Vian, M., and Zill-e-Huma, Y. (2009) Microwave Assisted Separations: Green Chemistry in Action. Green Chemistry Research Trends. Nova Science Publishers: New York, 33–62.
  • Camel, V. (2001) Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls. Analyst, 126(7): 1182–1193.
  • Thostenson, E. and Chou, T.-W. (1999) Microwave processing: Fundamentals and applications. Compos. Pt. A: Appl. Sci. Manufact., 30(9): 1055–1071.
  • Laghari, A.Q., Memon, S., Nelofar, A., and Laghari, A.H. (2011) Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. Amer. J. Anal. Chem., 2(8): 871–878.
  • Wang, L. and Weller, C.L. (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17(6): 300–312.
  • Chen, L., Jin, H., Ding, L., Zhang, H., Li, J., Qu, C., and Zhang, H. (2008) Dynamic microwave-assisted extraction of flavonoids from Herba Epimedii. Sep. Purif. Technol., 59(1): 50–57.
  • Azmin, S.N.H.M., Yunus, N.A., Mustaffa, A.A., Wan Alwi, S.R., and Chua, L.S. (2015) A framework for solvent selection based on herbal extraction process design. J. Eng. Sci. Technol. (Special Issue on SOMCHE 2014 Conference), 1: 25–34.
  • Zhang, H.-F., Yang, X.-H., Zhao, L.-D., and Wang, Y. (2009) Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innov. Food Sci. Emerg. Technol., 10(1): 54–60.
  • Gao, M., Huang, W., Roy Chowdhury, M., and Liu, C. (2007) Microwave-assisted extraction of scutellarin from Erigeron breviscapus: Hand-Mazz and its determination by high-performance liquid chromatography. Anal. Chim. Acta, 591(2): 161–166.
  • Li, H., Pordesimo, L., Weiss, J., and Wilhelm, L. (2004) Microwave and ultrasound assisted extraction of soybean oil. Trans. ASAE, 47(4): 1187–194.
  • Guo, Z., Jin, Q., Fan, G., Duan, Y., Qin, C., Wen, M. (2001) Microwave-assisted extraction of effective constituents from a Chinese herbal medicine Radix puerariae. Anal. Chim. Acta, 436(1): 41–47.
  • Li, J., Zu, Y.-G., Fu, Y.-J., Yang, Y.-C., Li, S.-M., Li, Z.-N., and Wink, M. (2010) Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge) kernel and evaluation of its antioxidant activity. Innov. Food Sci. Emerg. Technol., 11(4): 637–643.
  • Spigno, G. and De Faveri, D. (2009) Microwave-assisted extraction of tea phenols: A phenomenological study. J. Food Engin., 93(2): 210–217.
  • Ballard, T.S., Mallikarjunan, P., Zhou, K., and O’Keefe, S. (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem., 120(4): 11851192.
  • Chen, Y., Xie, M.-Y., Gong, X.-F. (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Engin. 81(1): 162–170.
  • Sandri, I., Zacaria, J., Fracaro, F., Delamare, A., and Echeverrigaray S. (2007) Antimicrobial activity of the essential oils of Brazilian species of the genus Cunila against foodborne pathogens and spoiling bacteria. Food Chem., 103(3): 823–828.
  • Sökmen, A., Vardar-Ünlü, G., Polissiou, M., Daferera, D., Sökmen, M., and Dönmez, E. (2003) Antimicrobial activity of essential oil and methanol extracts of Achillea sintenisii Hub. Mor. (Asteraceae). Phytother. Res., 17(9): 1005–1010.
  • Deba, F., Xuan, T.D., Yasuda, M., and Tawata, S. (2008) Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Contr., 19(4): 346–352.
  • Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., and Cintas, P. (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem., 15(5): 898–902.
  • Huie, C.W. (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal Chem., 373(1–2): 23–30.
  • Soria, A.C. and Villamiel, M. (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol., 21(7): 323–331.
  • Pico, Y. (2012) Chemical Analysis of Food: Techniques and Applications. Elsevier: Oxford, UK.
  • Chemat, F. and Khan, M.K. (2011) Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem., 18(4): 813–835.
  • Awad, T., Moharram, H., Shaltout, O., Asker, D., and Youssef, M. (2012) Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48(2): 410–427.
  • Patist, A. and Bates, D. (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Inn. Food Sci. Emerg. Technol., 9(2): 147–154.
  • Chandrapala J., Oliver C.M., Kentish S., Ashokkumar M. (2013) Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Rev. Int., 29(1): 67–91.
  • Romdhane, M. and Gourdon, C. (2002) Investigation in solid–liquid extraction: Influence of ultrasound. Chem. Eng. J., 87(1): 11–19.
  • Tatke, P. and Jaiswal, Y. (2011) An overview of microwave assisted extraction and its applications in herbal drug research. Res. J Med. Plant., 5: 21–31.
  • Pihie, L., Hawariah, A., Zakaria, Z.A., and Othman, F. (2012) Antiproliferative and proapoptotic effects of Labisia pumila ethanol extract and its active fraction in human melanoma HM3KO cells. Evidence-Based Complem. Alter. Med., 2012: 1–12. doi:10.1155/2012/123470.
  • Luque de Castro, M. and Garcıa-Ayuso, L. (1998) Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta, 369(1): 1–10.
  • Luque de Castro, M. and Priego-Capote, F. (2010) Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 1217(16): 2383–2389.
  • Zarnowski, R. and Suzuki, Y. (2004) Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J. Food Comp. Anal., 17(5): 649–663.
  • Mamidipally, P.K. and Liu, S.X. (2004) First approach on rice bran oil extraction using limonene. Eur. J. Lipid Sci. Technol., 106(2): 122–125.
  • Hanmoungjai, P., Pyle, L., and Niranjan, K. (2000) Extraction of rice bran oil using aqueous media. J. Chem. Technol. Biotechnol., 75(5): 348–352.
  • Wu, X., Ge, X., Liang, S., Lv, Y., and Sun, H. (2014) A novel selective accelerated solvent extraction for effective separation and rapid simultaneous determination of six anthraquinones in tartary buckwheat and its products by UPLC–DAD. Food Anal. Meth., 7(2): 1–9.
  • Zhu, H., Wang, Y., Liu, Y., Xia Y., Tang T. (2010) Analysis of flavonoids in Portulaca oleracea L. by UV–Vis spectrophotometry with comparative study on different extraction technologies. Food Anal. Meth., 3(2): 90–97.
  • Grosso, C., Cardoso, M.T., Figueiredo, A., Moldão-Martins, M., Burillo, J., Urieta, J., Barroso, J., Coelho, J., and Palavra, A. (2007) Supercritical fluid extraction, Hydrodistillation and Soxhlet extraction of the aerial part of winter savory. In Proceedings 528 of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 16–20 September 2007.
  • Gao, X., Yani, S., and Wu, H. (2014) Pyrolysis of spent biomass from mallee leaf steam distillation: Biochar properties and recycling of inherent inorganic nutrients. Energy Fuels, 28(7): 4642–4649.
  • Ridgway, K., Lalljie, S.P., and Smith, R.M. (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A, 1153: 36–53.
  • Jun, X., Deji, S., Ye, L., and Rui, Z. (2011) Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control., 22(8): 1473–1476.
  • von Rohr, P.R. and Trepp, C. (1996) High Pressure Chemical Engineering; Elsevier, Amsterdam.
  • Xi J., Shen D., Zhao S., Lu B., Li Y., Zhang R. (2009) Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm. 382:139–143.
  • Shouqin, Z., Junjie, Z., and Changzhen, W. (2004) Novel high pressure extraction technology. Int. J. Pharm., 278: 471–474.
  • Giergielewicz-Możajska, H., Dąbrowski, Ł., and Namieśnik, J. (2001) Accelerated solvent extraction (ASE) in the analysis of environmental solid samples—some aspects of theory and practice. Crit. Rev. Anal. Chem., 31(3): 149–165.
  • Kaufmann, B. and Christen, P. (2002) Recent extraction techniques for natural products: Microwave-assisted extraction and pressurized solvent extraction. Phytochem. Anal., 13(2): 105–113.
  • Ayala, R.S. and De Castro, M.L. (2001) Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem., 75(1): 109–113.
  • Ozel, M.Z., Gogus, F., and Lewis A.C. (2003) Subcritical water extraction of essential oils from Thymbra spicata. Food Chem., 82(3): 381–386.
  • Eikani, M.H., Golmohammad, F., and Rowshanzamir, S. (2007) Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J. Food Eng., 80(2): 735–740.
  • Jimenez-Carmona, M., Ubera J., de Castro M.L. (1999) Comparison of continuous subcritical water extraction and hydrodistillation of marjoram essential oil. J. Chromatogr. A, 855(2): 625–632.
  • Saim, N., Osman, R., Yasin, W.A.H.M., and Hamid R.D. (2008) Subcritical water extraction of essential oil from coriander (Coriandrum sativum L.) seeds. Malays. J. Anal. Sci., 12(1): 35–41.
  • Ehlers, D., Nguyen, T., Quirin, K., and Gerard, D. (2001) Analysis of essential basil oils-CO2 extracts and steam-distilled oils. Deutsche Lebensmittel-Rundschau, 97(7): 245–250.
  • Özer, E.f.Ö., Lin, S.P., Akman, U., and Hortaçsu, Ö. (1996) Supercritical carbon dioxide extraction of spearmint oil from mint-plant leaves. Can. J. Chem. Eng., 74(6): 920–928.
  • Bravi, E., Perretti, G., Montanari, L., Favati, F., and Fantozzi P. (2007) Supercritical fluid extraction for quality control in beer industry. J. Supercritic. Fluids, 42(3): 342–346.
  • Mansoori, G.A., Schulz, K., and Martinelli, E.E. (1988) Bioseparation using supercritical fluid extraction/retrograde condensation. Nat. Biotech., 6(4): 393–396.
  • Hawthorne, S.B., Rickkola, M.-L., Screnius, K., Holm, Y., Hiltunen, R., and Hartonen K. (1993) Comparison of hydrodistillation and supercritical fluid extraction for the determination of essential oils in aromatic plants. J. Chromatogr. A, 634(2): 297–308.
  • Rezazadeh, Sh. B.-a.B.Z.B.F., Vatanara, A, Behbahani, B., Rouholamini Najafabadi, A., Maleky-Doozzadeh, M., Yarigar-Ravesh, M., and Pirali Hamedani, M. (2008) Comparison of super critical fluid extraction and hydrodistillation methods on Lavander‘s essential oil composition and yield. J. Med. Plants, 7(4): 63–68.
  • Zhang, H.-F., Yang, X.-H., and Wang, Y. (2011) Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol., 22(12): 672–688.
  • Sticher, O. (2008) Natural product isolation. Natl. Prod. Repts., 25(3): 517–554.
  • Abdul Kadir, A., Nik Hussain, N.H., Wan Bebakar, W.M., Mohd, D.M., Wan Mohammad, W.M.Z., Hassan, I.I., Shukor, N., Kamaruddin, N.A., and Wan Mohamud, W.N. (2012) The effect of Labisia pumila var. alata on postmenopausal women: A pilot study. Evidence-Based Complementary and Alternative Medicine, 2012: 1–6. doi:10.1155/2012/216525.
  • Santos, D.T., Veggi, P.C., and Meireles, M.A.A. (2012) Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J. Food Eng., 108(3): 444–452.
  • Prado, J.M., Dalmolin, I., Carareto, N.D., Basso, R.C., Meirelles, A.J., Oliveira, J.V., Batista, E.A., and Meireles, M.A.A. (2012) Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J. Food Eng., 109(2): 249–257.
  • Reverchon, E. and Marrone, C. (1997) Supercritical extraction of clove bud essential oil: Isolation and mathematical modeling. Chem. Eng. Sci., 52(20): 3421–3428.
  • Molero Gómez, A., Pereyra López, C., and Martinez de la Ossa, E. (1996) Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: A comparison with conventional solvent extraction. Chem. Biochem. Eng. J., 61(3): 227–231.
  • Rosa, P.T. and Meireles, M.A.A. (2005) Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. J. Food Eng., 67(1): 235–240.
  • Fiori, L. (2010) Supercritical extraction of grape seed oil at industrial-scale: Plant and process design, modeling, economic feasibility. Chem. Eng. Proc.: Proc. Intens., 49(8): 866–872.
  • del Valle, J.M., Rivera, O., Mattea, M., Ruetsch, L., Daghero, J., and Flores, A. (2004) Supercritical CO2 processing of pretreated rosehip seeds: Effect of process scale on oil extraction kinetics. J. Supercrit. Fluids, 31(2): 159–174.
  • Prado, J.M., Prado, G.H., and Meireles, M.A.A. (2011) Scale-up study of supercritical fluid extraction process for clove and sugarcane residue. J. Supercrit. Fluids, 56(3): 231–237.
  • Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., and Chemat, F. (2014) Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem., 150: 193–198.
  • Kilpelainen, P.O., Hautala, S.S., Byman, O.O., Tanner, L.J., Korpinen, R.I., Lillandt, M.K.J., Pranovich, A.V., Kitunen, V.H., Willfor, S.M., and Ilvesniemi, H.S. (2014) Pressurized hot water flow-through extraction system scale up from the laboratory to the pilot scale. Green Chem., 16(6): 3186–3194.
  • Vinatoru, M. (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem., 8(3): 303–313.
  • Meireles, M.A.A. (2003) Supercritical extraction from solid: Process design data (2001–2003). Curr. Op. Solid State Mater. Sci., 7(4): 321–330.
  • Smith, R.M. (2002) Extractions with superheated water. J. Chromatogr. A, 975(1): 31–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.