724
Views
31
CrossRef citations to date
0
Altmetric
Review

Synthesis and Mechanical Properties of Natural Fiber Reinforced Epoxy/Polyester/Polypropylene Composites: A Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abbas, A., and S. Ansumali. 2010. Global potential of rice husk as a renewable feedstock for ethanol biofuel production. BioEnergy Research 3:328–34. doi:10.1007/s12155-010-9088-0.
  • Aggarwal, L. K., P. C. Thapliyal, and S. R. Karade. 2007. Properties of polymer-modified mortars using epoxy and acrylic emulsions. Construction and Building Materials 21 (2):379–83. doi:10.1016/j.conbuildmat.2005.08.007.
  • Al Shooshi, W. G. A. 1997. Chemical composition of some roselle (Hibiscus sabdariffa) genotypes, 123.
  • Ali, Z., M. Hussain, and M. Arshad. 2014. Saccharification of corn cobs an agro-industrial waste by sulphuric acid for the production of monomeric sugars. International Journal of Biosciences 5:204–13. doi:10.12692/ijb/5.3.204-213.
  • Al-Khanbashi, A., K. Al-Kaabi, and A. Hammami. 2005. Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polymer Composites 26:486–97. doi:10.1002/pc.20118.
  • Alzebdeh, K. I., M. M. A. Nassar, and R. Arunachalam. 2019. Effect of fabrication parameters on strength of natural fiber polypropylene composites: Statistical assessment. Measurement 146:195–207. doi:10.1016/j.measurement.2019.06.012.
  • Anobe, V. O. A., T. H. D. Sydenstricker, M. Munaro, and S. C. Amico. 2004. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing 24:474–82. doi:10.1016/j.polymertesting.2004.12.004.
  • Arthanarieswaran, V. P., A. Kumaravel, and M. Kathirselvam. 2014. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Materials & Design 64:194–202. doi:10.1016/j.matdes.2014.07.058.
  • Aruchamy, K., S. S. K. Pavayee Subramani, B. Palaniappan Sethuraman, and G. Velu Kaliyannan. 2020. Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates. Journal of Materials Research and Technology 9:718–26. doi:10.1016/j.jmrt.2019.11.013.
  • Athijayamani, A., M. Thiruchitrambalam, U. Natarajan, and B. Pazhanivel. 2009. Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science and Engineering A 517 (1–2):344–53. doi:10.1016/j.msea.2009.04.027.
  • Bacci, L., S. Baronti, S. Predieri, and N. Di Virgilio. 2009. Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Industrial Crops and Products 29:480–84. doi:10.1016/j.indcrop.2008.09.005.
  • Barbero, E. 2017. Introduction to Composite Materials Design. Boca Raton. CRC Press. doi:10.1201/9781315296494
  • Bhasney, M., A. K. Siddharth, and V. Katiyar. 2020. Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B: Engineering 184:107717. doi:10.1016/j.compositesb.2019.107717.
  • Bismarck, A., S. Mishra, and T. Lampke. 2005. Plant fibers as reinforcement for green composites, doi:10.1201/9780203508206.ch2.
  • Bledzki, A., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Bledzki, A. K., A. A. Mamunm, and J. Volk. 2009. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Composites Part A: Applied Science and Manufacturing 41:480–88. doi:10.1016/j.compositesa.2009.12.004.
  • Bodros, E., and C. Baley. 2008. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters 62:2143–45. doi:10.1016/j.matlet.2007.11.034.
  • Bonnin, E., M. C. Ralet, J. F. Thibault, and H. A. Schols. 2009. Enzymes for the valorisation of fruit and vegetable-based co-products. Woodhead Publishing Limited. doi:10.1533/9781845697051.3.257.
  • Bos, H. L. 2004. The potential of flax fibres as reinforcement for composite materials. doi:10.13140/RG.2.1.1540.4643
  • Botaro, V. R., J. S. E´der, and M. N. Ka´tia. 2011. Dynamic mechanical behavior of vinylester matrix composites reinforced by Luffa cylindrica modified fibers. Journal of Applied Polymer Science 116:2658–67. doi:10.1002/app.35019.
  • Brouwer, W. D. 2000. Natural fibre composites: Where can flax compete with glass? Sampe Journal 36:18–23.
  • Bujjibabu, G., V. C. Das, M. Ramakrishna, and K. Nagarjuna. 2018. Mechanical and water absorption behavior of Natural Fibers Reinforced Polypropylene Hybrid Composites. Materials Today: Proceedings 5:12249–56. doi:10.1016/j.matpr.2018.02.202.
  • Camciuc, M., M. Deplagne, G. Vilarem, and A. Gaset. 1996. Okra - Abelmoschus esculentus L. (Moench.) a crop with economic potential for set aside acreage in France. Industrial Crops and Products 7:257–64. doi:10.1016/S0926-6690(97)00056-3.
  • Carr, D. J., N. M. Cruthers, R. M. Laing, and B. E. Niven. 2005. Fibers from Three Cultivars of New Zealand Flax (Phormium tenax). Textile Research Journal 75 (2):93–98. doi:10.1177/004051750507500201.
  • Cheilas, T., T. Stoupis, P. Christakopoulos, P. Katapodis, D. Mamma, D. G. Hatzinikolaou, D. Kekos, and B. J. Macris. 1999. Hemicellulolytic activity of Fusarium oxysporum grown on sugar beet pulp. Production of extracellular arabinanase. Process Biochemistry 35:557–61. doi:10.1016/S0032-9592(99)00103-X.
  • Conghos, M. M., M. E. Aguirre, and R. M. Santamaría. 2003. Sunflower Hulls Degradation by Co-composting with Different Nitrogen Sources. Biology and Fertility of Soils 38:282–87. doi:10.1080/09593332708618711.
  • d’Almeida, J. R. M., R. C. M. P. Aquino, and S. N. Monteiro. 2005. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing 37:1473–79. doi:10.1016/j.compositesa.2005.03.035.
  • Da Luz, F. S., F. J. H. T. V. Ramos, L. F. C. Nascimento, A. B. H. D. S. Figueiredo, and S. N. Monteiro. 2018. Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. Journal of Materials Research and Technology 7:528–34. doi:10.1016/j.jmrt.2018.04.025.
  • Davies P., C. Morvan , and O. Sire 2007. Structure and properties of fibers from sea-grass (Zostera marina). Journal of Materials Science 42:4850–4857. doi:10.1007/s10853-006-0546-1.
  • Daniels, V. 1999. Factors affecting the deterioration of the cellulosic fibres in black-dyed New Zealand flax (Phormium tenax). Studies in Conservation 44:73–85. doi:10.1179/sic.1999.44.2.73.
  • David Green, W., E. Jerrold Winandy, and D. Kretschmann. 1999. Mechanical Properties of Wood. Materials Research Society Symposium Proceedings 546:213–18.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 70 (1):116–22. doi:10.1016/j.compscitech.2009.09.013.
  • Demirbas, A. 1996. Calculation of higher heating values of biomass fuels, Energy Sources. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2015.1115924.
  • Deo, C., and S. K. Acharya. 2010. Effect of moisture absorption on mechanical properties of chopped natural fiber reinforced epoxy composite. Journal of Reinforced Plastics and Composites 29 (16):2513–21. doi:10.1177/0731684409353352.
  • Di Bella, G. I., National, and V. Fiore. 2014. Natural Fibre Reinforced Composites, 1–89.
  • Dittenber, D. B., and H. V. S. Gangarao. 2011. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing 43:1419–29. doi:10.1016/j.compositesa.2011.11.019.
  • Eichhorn, S. J., C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, L. Groom, et al. 2001. Current international research into cellulosic fibres and composites. Journal of Materials Science 36 (9):2107–31. doi:10.1023/A:1017512029696.
  • El-Haggar, M. 2007. Sustainable Industrial Design and Waste Management. 1st ed. Cairo, Egypt: Elsevier.
  • Elkington, M., D. Bloom, C. Ward, A. Chatzimichali, and K. Potter. 2015. Hand Layup: Understanding the Manual Process. Advanced Manufacturing: Polymer and Composites Science 1 (3):138–51. doi:10.1080/20550340.2015.1114801.
  • Ellouze, A., D. A. Jesson, M. L. Abel, R. Ben Cheikh, and J. F. Watts. 2020. An Advance in the Use of Natural Resources: Characterisation of the Quality of Impregnation of Bleached Alfa Pulpboard by Unsaturated Polyester Resin and Evaluation of the Obtained Composite Material’s Properties. Industrial Crops and Products 153 (March):112520. doi:10.1016/j.indcrop.2020.112520.
  • Espert, A., F. Vilaplana, and S. Karlsson. 2004. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied Science and Manufacturing 35:1267–76. doi:10.1016/j.compositesa.2004.04.004.
  • Evens, T., O. Malek, S. Castagne, D. Seveno, and A. Van Bael. 2020. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manufacturing Letters 24:29–32. doi:10.1016/j.mfglet.2020.03.009.
  • Fang, J. M., R. C. Sun, and J. Tomkinson. 2000. Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose 7 (1):87–107. doi:10.1023/A:1009245100275.
  • Food and Agriculture Organization of the United Nations Italy, World total production of dates. 2018. Accessed June 5, 2020. http://www.fao.org/faostat/en/#home/Production/Crops/Regions/World+(Total)/Production Quantity/Dates.
  • Fuqua, M. A., S. Huo, and C. A. Ulven. 2012. Natural fiber reinforced composites. Polymer Reviews 52 (3):259–320. doi:10.1080/15583724.2012.705409.
  • Gao, Y., P. Romero, H. Zhang, M. Huang, and F. Lai. 2019. Unsaturated polyester resin concrete: A review. Construction and Building Materials 228:116709. doi:10.1016/j.conbuildmat.2019.116709.
  • García-Cubero, M. T., M. Coca, S. Bolado, and G. González-Benito. 2010. Chemical oxidation with ozone as pre-treatment of lignocellulosic materials for bioethanol production. Chemical Engineering Transactions 21:1273–78. doi:10.3303/CET1021213.
  • Geng, Z., C. Zongdao, and W. Yimin. 2007. Physicochemical properties of lotus (Nelumbo nucifera Gaertn.) and kudzu (pueraria hirsute matsum.) starches. International Journal of Food Science & Technology 42 (12):1449–55. doi:10.1111/j.1365-2621.2006.01363.x.
  • George, J., J. Ivens., and I. Verpoest. 1999. Mechanical properties of flax fibre reinforced epoxy composites. Die Angewandte Makromolekulare Chemie 272:41–45. doi:10.1002/(SICI)1522-9505(19991201)272:1<41::AID-APMC41>3.0.CO;2-X.
  • Georgopoulos, S. T., P. A. Tarantili, E. Avgerinos, A. G. Andreopoulos, and E. G. Koukios. 2005. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability 90 (2):303–12. doi:10.1016/j.polymdegradstab.2005.02.020.
  • Ghanem, K. M., H. A. Ghozlan, and S. A. Sabry. 1993. Riboflavin production by Aspergillus terreus from beet-molasses. Microbiología SEM 9:118–24.
  • Giridhar, J., and R. M. V. G. K. Kishore Rao. 1985. Moisture absorption characteristics of natural fibre composites. 141–50. doi:10.1177/073168448600500205.
  • Gopinath, B., G. K. Sathishkumar, P. Karthik, M. Martin Charles, K. G. Ashok, M. Ibrahim, and M. Mohamed Akheel. 2020. A systematic study of the impact of additives on structural and mechanical properties of magnetorheological fluids. Materials Today: Proceedings, no. xxxx doi:10.1016/j.matpr.2020.07.246.
  • Gu, F., Y. Zheng, W. Zhang, X. Yao, D. Pan, A. S. M. Wong, J. Guo, P. Hall, and N. Sharmin. 2018. Can bamboo fibres be an alternative to flax fibres as materials for plastic reinforcement? A comparative life cycle study on polypropylene/flax/bamboo laminates. Industrial Crops and Products 121:372–87. doi:10.1016/j.indcrop.2018.05.025.
  • Guimarães, J. L., E. Frollini, C. G. da Silva, F. Wypych., and K. G. Satyanarayana. 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products 30 (3):407–15. doi:10.1016/j.indcrop.2009.07.013.
  • Gwon, J. G., J. H. K. S. Y. Lee, and G. H. Doh. 2010. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. Journal of Applied Polymer Science 116:2658–67. doi:10.1002/app.31746.
  • Harish, S., D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai. 2009. Mechanical property evaluation of natural fiber coir composite. Materials Characterization 60 (1):44–49. doi:10.1016/j.matchar.2008.07.001.
  • Hassan, M. L., and A. A. M. A. Nada. 2002. Utilization of lignocellulosic fibers in molded polyester composites. Journal of Applied Polymer Science 87:653–60. doi:10.1002/app.11400.
  • Hattalli, S., A. Benaboura, F. Ham-Pichavant, A. Nourmamode, and A. Castellan. 2001. Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins 1. Lignin characterization. Polymer Degradation and Stability 76:259–64. doi:10.1016/S0141-3910(02)00022-8.
  • Hemanth, R. D., M. Senthil Kumar, A. Gopinath, and L. Natrayan. 2017. Evaluation of mechanical properties of E-Glass and coconut fiber reinforced with polyester and epoxy resin matrices. International Journal of Mechanical and Production 7 (5):243–48.
  • Heredia-Moreno, A., R. Guillén-Bejarano, J. Fernández-Bolaños, and M. Rivas-Moreno. 1987. Olive stones as a source of fermentable sugars enzymatic hydrolysis. Biomass. 14 (2):143–48. doi:10.1016/0144-4565(87)90016-3.
  • Hoareau, W., W. G. Trindade, B. Siegmund, A. Castellan, and E. Frollini. 2004. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: Characterization and stability. Polymer Degradation and Stability 86 (3):567–76. doi:10.1016/j.polymdegradstab.2004.07.005.
  • Hornsby, P. R., E. Hinrichsen, and K. Tarverdi 1997. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II Analysis of composite microstructure and mechanical properties. Journal of Materials Science 32 (4):1009–15. doi:10.1023/A:1018578322498.
  • Irawan, A. P., T. P. Soemardi, K. Widjajalaksmi, and A. H. S. Reksoprodjo. 2011. Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. International Journal of Mechanical and Materials Engineering 6:46–50.
  • Ismail, H., M. R. dyham, and B. Wirjosentono. 2001. Bamboo fibre filled natural rubber composites: The effects of filler loading and bonding agent. Polymer Testing 21:139–44. doi:10.1016/S0142-9418(01)00060-5.
  • Jain, S., R. Kumar., and U. C. Jinda. 1992. Mechanical behaviour of bamboo and bamboo composite. Journal of Materials Science 27 (17):4598–604. doi:10.1007/BF01165993.
  • Jian, W., Q. Mao, and J. Chen. 2013. Preparation of Polypropylene Single-Polymer Composites by Injection Molding. Journal of Applied Polymer Science 130 (3):2176–83. doi:10.1002/app.39411.
  • John, M. J., and R. D. Anandjiwala. 2008. Recent Developments in chemical modification and characterization of natural fiber-reinforced composites. Polymers and Polymer Composites 16:101–13. doi:10.1002/pc.20461.
  • John, M. J., and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71 (3):343–64. doi:10.1016/j.carbpol.2007.05.040.
  • Joseph, K., R. D. Tolêdo Filho, B. James., S. Thomas, and L. H. de Carvalho. 1999. A review on sisal fiber reinforced polymer composites. Revista Brasileira De Engenharia Agrícola E Ambiental 3:367–79. doi:10.1590/1807-1929/agriambi.v3n3p367-379.
  • Kaddami, H. A., D. B. Khelifi, A. Bendahou, A. M. Taourirte, M. Raihane, N. Issartel, H. Sautereau, J. F. Gérard, and N. Sami. 2005. Short palm tree fibers - Thermoset matrices composites. Composites Part A: Applied Science and Manufacturing 37:1413–22. doi:10.1016/j.compositesa.2005.06.020.
  • Kang, M. K., and W. Lee Il. 1999. Analysis of resin transfer/compression molding process. Polymer Composites 20 (2):293–304. doi:10.1002/pc.10356.
  • Kilinç, A. Ç., C. Durmuşkahya., and M. O. Seydibeyoğlu. 2017. Natural fibers. Fiber Technology for Fiber-Reinforced Composites 209–35. doi:10.1016/B978-0-08-101871-2.00010-2.
  • Kim, H. S., and S. H. Chang. 2019. Simulation of compression moulding process for long-fibre reinforced thermoset composites considering fibre bending. Composite Structures 230:111514. doi:10.1016/j.compstruct.2019.111514.
  • Kim, S. J., J. B. Moon, G. H. Kim, and C. S. Ha. 2008. Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing 27:801–06. doi:10.1016/j.polymertesting.2008.06.002.
  • Korotkova, T. G., S. J. dulo, A. P. Donenko, S. A. Bushumov, and A. S. Danilchenko. 2016. Physical properties and chemical composition of the rice husk and dust. Oriental Journal of Chemistry 32:3213–19. doi:10.13005/ojc/320644.
  • Kumar, B., N. C. Mistry, B. Singh, and C. P. Gandhi. 2011. Indian horticulture database.
  • Kumar, D., D. Sathish, E. Tony, P. Kumar, K. A. Kumar, D. B. S. Rao, and R. Nadendla. 2013. Ethnobotany: A method manual, chapman & hall. International Research Journal of Pharmaceutical and Applied Sciences 3 (4):129–32.
  • Lauricio, F. M. 1987. Technology Manual on Rice Husk Ash Cements (UNDP/UNIDO (RENAS-BMTCS). Makati, Philippines.
  • Li X., L. G. Tabil, and S. Panigrahi 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymer and the Environment 15:25–33. doi:10.1007/s10924-006-0042-3.
  • Liu, W., J. Zhang, M. Hong, P. Li, Y. Xue, Q. Chen, and X. Ji. 2020. Chain microstructure of two highly impact polypropylene resins with good balance between stiffness and toughness. Polymer (Guildf) 188:122146. doi:10.1016/j.polymer.2019.122146.
  • Luo, X., R. S. Benson, K. M. Kit, and M. Dever. 2002. Kudzu fiber-reinforced polypropylene composite. Journal of Applied Polymer Science 85 (9):1961–69. doi:10.1002/app.10762.
  • Mahjoub, R., J. M. Yatim, A. R. Mohd Sam, and M. Raftari. 2014. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials & Design 64:640–49. doi:10.1016/j.matdes.2014.08.010.
  • Malkapuram, R., V. Kumar, and Y. Singh Negi. 2008. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites 28:1169–89. doi:10.1177/0731684407087759.
  • Marzuki, Nur Hidayah, Mat Uzir Wahit, Agus Arsad, Norhayani Othman, and Noor Izyan Syazana Mohd Yusoff. 2020. The Effect of Kenaf Loading on the Mechanical Properties of Kenaf-Reinforced Recycled Poly(Ethylene Terephthalate)/Recycled Poly(Propylene) (RPET/RPP) Composite. Materials Today: Proceedings, no. xxxx. doi:10.1016/j.matpr.2020.04.333.
  • Marklund, E., and J. Varna. 2009. Modeling the effect of helical fiber structure on wood fiber composite elastic properties. Applied Composite Materials 16 (4):245–62. doi:10.1007/s10443-009-9091-9.
  • Martí-Ferrer, F., F. Vilaplana, A. Ribes-Greus, A. Benedito-Borrás, and C. Sanz-Box. 2006. Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents. Journal of Applied Polymer Science 99 (4):1823–31. doi:10.1002/app.22717.
  • Methacanon, P., U. Weerawatsophon, N. Sumransin, C. Prahsarn, and D. T. Bergado. 2010. Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers 82 (4):1090–96. doi:10.1016/j.carbpol.2010.06.036.
  • Meyer, N., L. Schöttl, L. Bretz, A. N. Hrymak, and L. Kärger. 2020. Direct bundle simulation approach for the compression molding process of sheet molding compound. Composites Part A: Applied Science and Manufacturing 132:105809. doi:10.1016/j.compositesa.2020.105809.
  • Michel, F., J. F. Thibault, J. L. Barry, and R. de Baynast. 1987. Preparation and characterisation of dietary fibre from sugar beet pulp. Journal of the Science of Food and Agriculture 42:77–85. doi:10.1002/jsfa.2740420109.
  • Milanese, A. C., M. O. H. Cioffi, and H. J. C. Voorwald. 2012. Thermal and mechanical behaviour of sisal/phenolic composites. Composites Part B: Engineering 43:2843–50. doi:10.1016/j.compositesb.2012.04.048.
  • Mir, S. S., N. Nafsin, M. Hasan, N. Hasan, and A. Hassan. 2013. Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials & Design (1980-2015) 52:251–57. doi:10.1016/j.matdes.2013.05.062.
  • Mishra, V., and S. Biswas. 2013. Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering 51:561–66. doi:10.1016/j.proeng.2013.01.079.
  • Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites:. Materials Science 276 (277):1–24. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  • Mohanty, A. K., M. Misra, and L. T. Drzal, (eds). 2005. Natural Fibers, Biopolymers and biocomposites, 37–108. Boca Raton: Taylor & Francis Group.
  • Monteiro, S. N., L. A. H. Terrones, and J. R. M. D’Almeida. 2008. Mechanical performance of coir fiber/polyester composites. Polymer Testing 27 (5):591–95. doi:10.1016/j.polymertesting.2008.03.003.
  • Mullin, W. J., and W. Xu. 2001. Study of soybean seed coat components and their relationship to water absorption. Journal of Agricultural and Food Chemistry 49 (11):5331–35. doi:10.1021/jf010303s.
  • Murali M. R. K., A. V. Ratna Prasad, and M. N. V. Ranga Babu. 2007. Tensile properties of elephant grass fiber reinforced polyester composites. Journal of Materials Science 42:3266–3272. doi:10.1007/s10853-006-0657-8.
  • Murray, J. J., C. Robert, K. Gleich, E. D. McCarthy, and C. M. Ó. Brádaigh. 2020. Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Materials & Design 189:108512. doi:10.1016/j.matdes.2020.108512.
  • Muthayya, S., J. D. Sugimoto, S. Montgomery, and G. F. Maberly. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences 1324 (1):7–14. doi:10.1111/nyas.12540.
  • Mylsamy K., and I. Rajendran. 2010. Investigation on physio- chemical and mechanical properties of raw and Alkali- treated agave Americana fiber. Journal of Reinforced Plastics and Composites 29:2925–2935. doi:10.1177/0731684410362817.
  • Narendra Reddy, Y. Y. 2006. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen. Journal of Anatomy. doi:10.1002/bit.21330.
  • Neto, C. P., A. Seca, A. M. Nunes, M. A. Coimbra, F. Domingues, D. Evtuguin, A. Silvestre, and J. A. S. Cavaleiro. 1996. Variations in chemical composition and structure of macromolecular components in different morphological regions and maturity stages of Arundo donax. Industrial Crops and Products 6:51–58. doi:10.1016/S0926-6690(96)00205-1.
  • Neves, A. C. C., L. A. Rohen, D. P. Mantovani, J. P. R. G. Carvalho, C. M. F. Vieira, F. P. D. Lopes, N. T. Simonassi, F. S. D. Luz, and S. N. Monteiro. 2020. Comparative mechanical properties between biocomposites of Epoxy and polyester matrices reinforced by hemp fiber. Journal of Materials Research and Technology 9:1296–304. doi:10.1016/j.jmrt.2019.11.056.
  • Ndazi B., J. V. Tesha, and E. T. N. Bisanda. 2006. Some opportunities and challenges of producing bio-composites from non-wood residues. Journal of Materials Science 41:6984–6990. doi:10.1007/s10853-006-0216-3.
  • O’Mara, P. P., F. J. Mulligan, E. J. Cronin, M. Rath, and P. J. Caffrey. 1999. The nutritive value of palm kernel meal measured in vivo and using rumen fluid and enzymatic techniques. Livestock Production Science 60:305–16. doi:10.1016/S0301-6226(99)00102-5.
  • Ohanaka, A. U. C., V. O. Duruanyim, I. F. Etuk, M. C. Uchegbu, and I. C. Okoli. 2017. Physico – Chemical Composition of Palm Kernel Shell Ash (PKSA) as a Potential Mineral Supplement in Livestock Nutrition Livestock and Poultry Production, Improvement, Health and Welfare. In Conference of the Nigerian Society for Animal Production Landmark University. Omu-Aram Kwara, Niger.
  • Parbin, S., N. K. Waghmare, S. K. Singh, and S. Khan. 2019. Mechanical properties of natural fiber reinforced epoxy composites: A review. Procedia Computer Science 152 (2019):375–79. doi:10.1016/j.procs.2019.05.003.
  • Pathan Yasin, M., C. Venkata Ramana, K. Vamshi, and K. Pradeep. 2019. A study of continuous Henequen/Epoxy composites. Materials Today: Proceedings 18:3798–811. doi:10.1016/j.matpr.2019.07.318.
  • Prasad, A. V. R., K. M. Rao, A. V. S. S. K. S. Gupta, and B. V. Reddy. 2010. A Study on flexural properties of wildcane grass fiber-reinforced polyester composites. Journal of Materials Science 46:2627–34. doi:10.1007/s10853-010-5117-9.
  • Prasad, A. V. R., K. M. Rao, A. V. S. S. K. S. Gupta, and B. V. Reddy. 2011. A Study on flexural properties of wildcane grass fiber-reinforced polyester composites. Journal of Materials Science 46:2627–34. doi:10.1007/s10853-010-5117-9.
  • Prückler, M., S. Siebenhandl-Ehn, S. Apprich, S. Höltinger, C. Haas, E. Schmid, and W. Kneife. 2014. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology 56 (2):211–21. doi:10.1016/j.lwt.2013.12.004.
  • Rajesh, G., A. Revuri, M. S. Arekapudi, and G. Raja. 2019. Evaluating tensile properties of phragmites karka fibre reinforced polyester composites. Materials Today: Proceedings 18:8–14. doi:10.1016/j.matpr.2019.06.271.
  • Rajkumar, G., V. Dhivya, S. Mahalaxmi, K. Rajkumar, G. K. Sathishkumar, and R. Karpagam. 2018. Influence of fluoride for enhancing bioactivity onto phosphate based glasses. Journal of Non-crystalline Solids 493 (April):108–18. doi:10.1016/j.jnoncrysol.2018.04.046.
  • Ratna Prasad, A. V., and K. Mohana Rao. 2011. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Materials & Design 32 (8–9):4658–63. doi:10.1016/j.matdes.2011.03.015.
  • Ray, K., H. Patra, A. K. Swain, B. Parida, S. Mahapatra, A. Sahu, and S. Rana. 2020. Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: Fabrication and analysis of mechanical and water absorption properties. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.02.964.
  • Razali, N., S. M. Sapuan, M. Jawaid, M. R. Ishak, and Y. Lazim. 2016. Mechanical and thermal properties of roselle fibre reinforced Vinyl ester composites. BioResources 11:4. doi:10.15376/biores.11.4.9325-9339.
  • Rejaul, H., and R. Rayyaan. 2014. Effect of Fibre geometry on the tensile properties of thermoset jute fibres composites. 4 (10):1–5.
  • Sain, M., and S. Panthapulakkal. 2005. Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products 23:1–8. doi:10.1016/j.indcrop.2005.01.006.
  • Samuel V. G., and L. Z. Samuel. 2010. Moisture relations and physical properties of wood. Wood handbook : wood as an engineering material: chapter 4. Centennial ed. General technical report FPL ; GTR-190. Madison, WI : U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory p. 4.1–4.19.
  • Sanjay, M. R., G. R. Arpitha, L. Laxmana Naik, K. Gopalakrishna, and B. Yogesha. 2016. Studies on mechanical properties of banana/E-Glass fabrics reinforced polyester hybrid composites. Journal of Materials and Environmental Science 7 (9):3179–92.
  • Santhi, K. A., C. Srinivas, and R. Ajay Kumar. 2020. Experimental investigation of mechanical properties of Jute-Ramie fibres reinforced with epoxy hybrid composites. Materials Today: Proceedings, no. xxxx. doi:10.1016/j.matpr.2020.04.368.
  • Saravana B. D., and G. C. Mohan Kumar. 2010. Potential use of natural fiber composite materials in India. Journal of Reinforced Plastic and Composites 29:3600–3613. doi:10.1177/0731684410381151.
  • Sarikaya, E., H. Çallioğlu, and H. Demirel. 2019. Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Composites Part B: Engineering 167:461–66. doi:10.1016/j.compositesb.2019.03.020.
  • Sathees Kumar, S. 2020. Dataset on mechanical properties of natural fiber reinforced polyester composites for engineering applications. Data in Brief 28:105054. doi:10.1016/j.dib.2019.105054.
  • Sathishkumar, G. K., G. Rajkumar, K. Srinivasan, and M. J. Umapathy. 2017. Structural analysis and mechanical properties of lignite fly-ash-added jute–epoxy polymer matrix composite. Journal of Reinforced Plastics and Composites 37 (2):90–104. doi:10.1177/0731684417735183.
  • Sathishkumar, T. P., P. Navaneethakrishnan, and S. Shankar. 2012. Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Composites Science and Technology 72 (10):1183–90. doi:10.1016/j.compscitech.2012.04.001.
  • Sathishkumar, T. P., P. Navaneethakrishnan, S. Shankar, R. Rajasekar, and N. Rajini. 2013. Characterization of natural fiber and composites - A review. Journal of Reinforced Plastics and Composites 32 (19):1457–76. doi:10.1177/0731684413495322.
  • Satyanarayana, K. G., K. Sukumaran, A. G. Kulkarni, S. G. K. Pillai, and P. K. Rohatgi. 1986. Fabrication and properties of natural fibre-reinforced polyester composites. Composites 17 (4):329–33. doi:10.1016/0010-4361(86)90750-0.
  • Sevkat, E., and M. Brahimi. 2011. The bearing strength of pin loaded woven composites manufactured by vacuum assisted resin transfer moulding and hand lay-up techniques. Procedia Engineering 10:153–58. doi:10.1016/j.proeng.2011.04.028.
  • Shahbandeh, M. 2020. Palm oil: Global production volume 2012/13-2019/20. Statistica-Germany. Accessed June 5, 2020. https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/.
  • Sharma, K., B. U. Vishal Khilari, A. B. Chaudhary, A. B. P. Jogi, and R. D. Kale. 2020. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Waste Management 107:227–34. doi:10.1016/j.wasman.2020.04.011.
  • Shoaib, A. M., R. A. El-Adly, M. H. M. Hassanean, A. Youssry, and A. A. Bhran. 2018. Developing a free-fall reactor for rice straw fast pyrolysis to produce bio-products. Egyptian Journal of Petroleum 27 (4):1305–11. doi:10.1016/j.ejpe.2018.08.002.
  • Sinha, A. K., H. K. Narang, and S. Bhattacharya. 2018. Tensile strength of abaca epoxy laminated composites. Materials Today: Proceedings 5 (14):27861–64. doi:10.1016/j.matpr.2018.10.024.
  • Sivakandhan, C., R. Balaji, G. B. Loganathan, D. Madan, and G. Murali. 2020. Investigation of mechanical behaviour on sponge/ridge gourd (Luffa aegyptiaca) natural fiber using epoxy and polyester resin. Materials Today: Proceedings 22:705–14. doi:10.1016/j.matpr.2019.09.183.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of sansevieria cylindrica fibres - an exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Srinivas, P. N. S., and R. G. E. V. Kumar. 2013. Experimental Investigation of Multiwalled Carbon Nanotube Reinforcement in the Metal Matrix Composites for High Value Fatigue Life. International Journal of Computational Engineering Research Vol 03: 71–77.
  • Srinivasababu, N. 2015. An overview of okra fibre reinforced polymer composites. IOP Conference Series: Materials Science and Engineering 83. doi:10.1088/1757-899X/83/1/012003.
  • Swamy, R. P., G. C. M. Kumar, Y. Vrushabhendrappa, and V. Joseph. 2004. Study of areca-reinforced phenol formaldehyde composites. Journal of Reinforced Plastics and Composites 23 (13):1373–82. doi:10.1177/0731684404037049.
  • Taher, Y. 2011. Determination of digestibility of almond hull in sheep. African Journal of Biotechnology 10 (15):3022–26. doi:10.5897/ajb10.1631.
  • Tanner, R. D., A. Prokop, and R. K. Bajpai. 1993. Removal of fiber from vines by solid state fermentation/enzymatic degradation: A comparison of flax and kudzu retting. Biotechnology Advances 11 (3):635–43. doi:10.1016/0734-9750(93)90032-I.
  • Thamae T., and C. Baillie. 2007. Influence of fiber extraction method, alkali and silane treatment on the interface of Agave Americana waste HDPE composites as possible roof ceilings in Lesotho. Composite Interfaces 14:821–836. doi:10.1163/156855407782106483.
  • Thomas, G. P. 2012. Recycling of Polypropylene. Recycling of Polypropylene 52 (1):59–61.
  • To, I. 2017. Introduction to Composite Materials Design. 3rd ed. doi:10.1201/9781315296494.
  • Trindade, W. G., W. Hoareau, I. A. T. Razera, R. Ruggiero, E. Frollini, and A. Castellan. 2004. Phenolic thermoset matrix reinforced with sugar cane bagasse fibers: Attempt to develop a new fiber surface chemical modification involving formation of quinones followed by reaction with furfuryl alcohol. Macromolecular Materials and Engineering 289:728–36. doi:10.1002/mame.200300320.
  • Vadivel Vivek, V., N. Natarajan, S. Raghavendra Prabhu, K. L. Senthil Kumar, and R. S. Karrthik. 2020. Prediction of mechanical characteristics of wrightia tinctoria fiber reinforced iso-polyester resin composites. Materials Today: Proceedings, no. xxxx: 1–5. doi:10.1016/j.matpr.2020.03.486.
  • van Dam, J. E. G., and T. A. Gorshkova. 2003. Cell walls and fibers/Fiber Formation. Encyclopedia of Applied Plant Sciences 87–96. doi:10.1016/B0-12-227050-9/00046-6.
  • Venkateshwaran N., and A. Elayaperumal. 2010. Banana fiber reinforced polymer composites - a review. Journal of Reinforced Plastics and Composites 29:2387–2396. doi:10.1177/0731684409360578.
  • Verma, D., P. C. Gope, M. K. Maheshwari, and R. K. Sharma. 2012. Bagasse fiber composites-A review. Journal of Materials and Environmental Science 3:1079–92.
  • Vilay, V., M. Mariatti, R. Mat Taib, and M. Todo. 2007. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Composites Science and Technology 68:631–38. doi:10.1016/j.compscitech.2007.10.005.
  • Walid, A.-S., and R. J. Marshall. 2003. The fruit of the date palm: Its possible use as the best food for the future? International Journal of Food Sciences and Nutrition 54:247–59. doi:10.1080/09637480120091982.
  • Wang, X., H. Yuan, Y. Pan, C. Liu, C. Shen, and X. Liu. 2019. Creep behavior and mechanical properties of isotactic polypropylene composites via twice melt injection molding. Advanced Industrial and Engineering Polymer Research 2:102–09. doi:10.1016/j.aiepr.2019.06.001.
  • Woźniak-Braszak, A., and M. Knitter. 2020. Molecular dynamics in polyester resin doped with barium titanate nanoparticles studied by 1H NMR techniques. Journal of Physics and Chemistry of Solids 146:109550. doi:10.1016/j.jpcs.2020.109550.
  • Yang, Y., F. M. Mohamed, Z. P. Fahmy, Y. Zhan, R. Wang, B. Wang, and B. Feng. 2020. Experimental study on basic mechanical properties of new BFRP-bamboo sandwich structure. Construction and Building Materials 264:120642. doi:10.1016/j.conbuildmat.2020.120642.
  • Zhang, M. L., Y. T. Fan, Y. Xing, C. M. Pan, G. S. Zhang, and J. J. Lay. 2007. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass & Bioenergy 31:250–54. doi:10.1016/j.biombioe.2006.08.004.
  • Zhao, Y., J. Qiu, H. Feng, M. Zhang, L. Lei, and X. Wu. 2011. Improvement of tensile and thermal properties of poly(lactic acid) composites with admicellar-treated rice straw fiber. Chemical Engineering Journal 173 (2):659–66. doi:10.1016/j.cej.2011.07.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.