1,621
Views
77
CrossRef citations to date
0
Altmetric
Original Articles

A Strategy for Assessing Workplace Exposures to Nanomaterials

, , , , , , , , & show all
Pages 673-685 | Published online: 24 Oct 2011

REFERENCES

  • Hullmans , A. 2007 . Measuring and assessing the development of nanotechnology . Scientometrics , 70 ( 3 ) : 739 – 758 .
  • Lane , N. and Kalil , T. “The National Nanotechnology Initiative: Present at the Creation.” . [Online] Available at http://www.issues.org/21.4/lane.html (Accessed April 5, 2010)
  • Roco , M. C. 2007 . “ Nanotechnology initiative: Past, present, future ” . In Handbook on Nanoscience, Engineering, Technology , 2nd ed , Edited by: Goddard , W. A. 19 – 44 . Boca Raton , Fla. : Taylor & Francis .
  • Lux Research . 2007 . The Nanotech Report , 5th ed. , New York : Lux Research Inc. .
  • Roco , M. C. 2003 . Broader societal issues of nanotechnology . J. Nanopart. Res. , 5 ( 3–4 ) : 181 – 189 .
  • Project on Emerging Nanotechnologies, Woodrow Wilson Center: . “Analysis.” . [Online] Available at http://www.nanotechproject.org/inventories/consumer/analysis_draft (Accessed February 12, 2010)
  • Health & Safety Executive (HSE) . 2004 . Nanoparticles: An Occupational Hygiene Review (Research Report 274) , Edited by: Aitken , R. J. , Creely , K. S. and London , C. L. Tran. Institute of Occupational Medicine for the Health and Safety Executive .
  • Maynard , A. D. 2006 . Nanotechnology: A Research Strategy for Addressing Risk , Washington , D.C. : Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies .
  • Kandlikar , M. , Ramachandran , G. Maynard , A. 2007 . Health risk assessment for nanoparticles: A case for using expert judgment . J. Nanopart. Res. , 9 ( 1 ) : 137 – 156 .
  • Centers for Disease Control and Prevention (CDC) and National Institute for Occupational Safety and Health (NIOSH) . Approaches to safe nanotechnology: An information exchange with NIOSH . Draft for public comment, Version 1.1. 2006
  • International Organization for Standardization (ISO) . 2007 . Geneva : ISO . Workplace Atmospheres—Ultrafine, Nanoparticle and Nanostructured Aerosols—Inhalation Exposure Characterization and Assessment (ISO/TR 27628: 2007(E))
  • McCawley , M. , Kent , M. and Berakis , M. 2001 . Ultrafine beryllium number concentration as a possible metric for chronic beryllium disease risk . Appl. Occup. Environ. Hyg. , 16 : 631 – 638 .
  • Maynard , A. D. and Kuempel , E. D. 2005 . Airborne nanostructured particles and occupational health . J. Nanopart. Res. , 7 ( 6 ) : 587 – 614 .
  • Paik , S. Y. , Zalk , D. M. and Swuste , P. 2008 . Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures . Ann. Occup. Hyg. , 52 ( 6 ) : 419 – 428 .
  • Ignacio , J. and Bullock , B. , eds. 2006 . A Strategy for Assessing and Managing Occupational Exposures , 3rd ed. , Fairfax , Va. : AIHA Press .
  • Swihart , M. T. 2003 . Vapor-phase synthesis of nanoparticles . Curr. Opin. Colloid Interface Sci. , 8 ( 1 ) : 127 – 133 .
  • Maynard , A. D. , Baron , P. A. Foley , M. 2004 . Exposure to carbon nanotube material: aerosol release during the handling of unrefined singlewalled carbon nanotube material . J. Toxicol. Environ. Health , 67 : 87 – 107 .
  • Mazzuckelli , J. F. , Methner , M. M. Birch , M. E. 2007 . Case Study. Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations . J. Occup. Environ. Hyg. , 4 : 125 – 130 .
  • Kuhlbusch , T. A.J. , Neumann , S. and Fissan , H. 2004 . Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production . J. Occup. Environ. Hyg. , 1 : 660 – 671 .
  • Evans , D. E. , Ku , B. K. , Birch , M. E. and Dunn , K. H. 2010 . Aerosol monitoring during carbon nanofiber production: Mobile direct-reading sampling . Ann. Occup. Hyg. , 54 ( 5 ) : 514 – 531 .
  • Johnson , D. R. , Methner , M. M. Kennedy , A. J. 2010 . Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies . Environ. Health Perspect. , 118 ( 1 ) : 49 – 54 .
  • Peters , T. M. , Elzey , S. Johnson , R. 2009 . Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety . J. Occup. Environ. Hyg. , 6 : 73 – 81 .
  • Methner , M. , Hodson , L. and Geraci , C. 2010 . Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials- Part A . J. Occup. Environ. Hyg. , 7 : 1 – 6 .
  • Methner , M. , Hodson , L. Dames , A. 2010 . Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials- Part B: Results from 12 field studies . J. Occup. Environ. Hyg. , 7 : 163 – 176 .
  • Dasch , J. , D’Arcy , J. Gundrum , A. 2005 . Characterization of fine particles from machining in automotive plants . J. Occup. Environ. Hyg. , 2 : 609 – 625 .
  • Peters , M. T. , Heitbrink , W. A. Evans , D. E. 2006 . The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility . Ann. Occup. Hyg. , 50 ( 3 ) : 249 – 257 .
  • Bello , D. , Hart , A. J. Ahn , K. 2008 . Particles exposure levels during CVD growth and subsequent handling of vertically aligned carbon nanotube films . Carbon , 46 : 974 – 981 .
  • Evans , D. E. , Heitbrink , W. A. Slavin , T. J. 2008 . Ultrafine and respirable particles in an automotive grey iron foundry . Ann. Occup. Hyg. , 52 ( 1 ) : 9 – 22 .
  • Corn , M. and Esmen , N. E. 1979 . Workplace exposure zones for classification of employee exposures to physical and chemical agents . Am. Ind. Hyg. Assoc. J. , 40 : 47 – 57 .
  • Comité Européen de Normalisation (CEN) . Workplace Atmospheres—Guidance for the Assessment of Exposure by Inhalation of Chemical Agents for Comparison with Limit Values and Measurement Strategy (European Standard EN 689) Effective no later than August 1995
  • O’Brien , D. M. 2003 . Aerosol mapping of a facility with multiple cases of hypersensitivity pneumonitis: Demonstration of mist reduction and a possible dose/response relationship . Appl. Occup. Environ. Hyg. , 18 : 947 – 952 . 2003
  • Park , J. Y. , Ramachandran , G. Raynor , P. C. 2010 . Determination of particle concentration rankings by spatial mapping of particle surface area, number, and mass concentrations in a restaurant and a die casting plant . J. Occup. Environ. Hyg. , 7 : 466 – 476 .
  • Ramachandran , G. , Paulsen , D. Watts , W. 2005 . Mass, surface area and number metrics in diesel occupational exposure assessment . J. Environ. Monit. , 7 ( 7 ) : 728 – 735 .
  • Heitbrink , W. , Evans , D. Ku , B. 2009 . Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing . J. Occup. Environ. Hyg. , 6 : 19 – 31 .
  • Peters , A. , Wichmann , H. E. Tuch , T. 1997 . Respiratory effects are associated with the number of ultrafine particles . Am. J. Resp. Crit. Care Med. , 155 : 1376 – 1383 .
  • Maynard , A. D. and Maynard , R. L. 2002 . A derived association between ambient aerosol surface area and excess mortality using historic time series data . Atmos. Environ. , 36 : 5561 – 5567 .
  • Brown , D. M. , Wilson , M. R. MacNee , W. 2001 . Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for SA and oxidative stress in the enhanced activity of ultrafines . Toxicol. Appl. Pharmacol. , 175 : 191 – 199 .
  • Li , X. Y. , Gilmour , P. S. Donaldson , K. 1996 . Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro . Thorax , 51 : 1216 – 1222 .
  • Oberdörster , G. 2000 . Toxicology of ultrafine particles: in vivo studies . Phil. Trans. R. Soc. Lond. A. , 358 : 2719 – 2740 .
  • Tran , C. L. , Buchanan , D. Cullen , R. T. 2000 . Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance . Inhal. Toxicol. , 12 : 1113 – 1126 . 2000
  • Maynard , A. D. and Aitken , R. J. 2007 . Assessing exposure to airborne nanomaterials: Current abilities and future requirements . Nanotoxicology , 1 : 26 – 41 .
  • Flegal , K. M. , Keyl , P. M. and Nieto , F. J. 1991 . Differential misclassification arising from nondifferential errors in exposure measurement . Am. J. Epidemiol. , 134 : 1233 – 1241 .
  • Baron , P. A. and Willeke , K. 2001 . Aerosol Measurement: Principles, Techniques, and Applications , 2nd Ed. , New York : Wiley-Interscience .
  • ACGIH® . 2001 . Air Sampling Instruments , 9th ed. , Cincinnati , Ohio : ACGIH .
  • Baron , P. A. , Deye , G. J. Chen , B. T. 2003 . Aerosolization of single-walled carbon nanotubes for an inhalation study . Inhal. Toxicol. , 20 ( 8 ) : 751 – 760 .
  • Demou , E. , Peter , P. and Hellweg , S. 2008 . Exposure to manufactured nanostructured particles in an industrial pilot plant . Ann. Occup. Hyg. , 52 ( 8 ) : 695 – 706 .
  • Park , J. , Kwak , B. K. Bae , E. 2009 . Characterization of exposure to silver nanoparticles in a manufacturing facility . J. Nanopart. Res. , 11 : 1705 – 1712 .
  • Schmoll , L. , Peters , T. M. and O’Shaughnessy , P. T. 2010 . Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles . J. Occup. Environ. Hyg. , 7 : 535 – 545 .
  • International Commission on Radiological Protection (ICRP) . 1994 . Human Respiratory Tract Model for Radiological Protection (ICRP Pub. 66) , Elmsford , N.Y. : Pergamon Press .
  • Asbach , C. , Fissan , H. Stahlmecke , B. 2009 . Conceptual limitations and extensions of the lung-deposited nanoparticle surface area monitor (NSAM) . J. Nanopart. Res. , 11 : 101 – 109 .
  • Ku , B. K. and Maynard , A. D. 2005 . Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging . J. Aerosol Sci. , 36 : 1108 – 1124 .
  • Schulte , P. A. , Murashov , V. Zumwalde , R. 2010 . Occupational exposure limits for nanomaterials: State of the art . J. Nanopart. Res. , 12 : 1971 – 1987 .
  • Ausschuss für Gefahrstoffe [German Committee on Hazardous Substances] . Technische Regeln für Gefahrstoffe 900 (TRGS 900) [Technical Regulations for Hazardous Substances], Arbeitsplatzgrenzwerte [Job limit values, OELs] . [Online] Available at http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/TRGS-900.html (Accessed Aug. 26, 2011)
  • National Institute for Occupational Safety and Health (NIOSH) . 2005 . Evaluation of Health Hazard and Recommendations for Occupational Exposure to Titanium Dioxide , Draft Document for Public Review and Comment. NIOSH Current Intelligence Bulletin . NIOSH Docket #100
  • Bayer MaterialScience . “Occupational Exposure Limit (OEL) for Baytubes Defined by Bayer MaterialScience.” . [Online] Available athttp://www.baytubes.com/news_and_services/news_09116_oel.html (Accessed October 12, 2011)
  • Luizi , F. “Responsible Care & Nanomaterials: Case Study Nanocyl.” Paper presented at European Responsible Care Conference, Prague, Czech Republic, Oct. 21–23, 2009
  • German Federal Institute for Occupational Safety and Health, BAuA . “Risk Figures and Exposure-Risk Relationships in Activities Involving Carcinogenic Hazardous Substances.” . [On line] Available at http://www.baua.de/en/Topics-from-A-to-Z/Hazardous-Substances/TRGS/Announcement-910.html. (Accessed October 12, 2011)
  • National Institute for Occupational Safety and Health (NIOSH) . Occupational Exposure to Carbon Nanotube and Fibers , NIOSH Current Intelligence Bulletin . November 2010 draft
  • British Standard Institute (BSI) . 2007 . BSI Guide to Safe Handling and Disposal of Manufactured Nanomaterials , London : BSI . (BSI PD6699–2:2007)
  • IFA . “Criteria for Assessment of the Effectiveness of Protective Measures.” . [Online] Available at http://www.dguv.de/ifa/en/fac/nanopartikel/beurtei-lungsmassstaebe/index.jsp (Accessed October 12, 2011)
  • Pacurari , M. , Castranova , V. and Vallyathan , V. 2010 . Single- and multi-wall carbon nanotubes versus asbestos: Are the carbon nanotubes a new health risk to humans? . J. Toxicol. Environ. Health A , 73 ( 5 ) : 378 – 395 .
  • Patlolla , A. , Knighten , B. and Tchounwou , P. 2010 . Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells . Ethn. Dis. , 20 ( 1 Suppl 1 ) S1–65–72
  • Kishore , A. S. , Surekha , P. and Murthy , P. B. 2009 . Assessment of the dermal and ocular irritation potential of multi-walled carbon nanotubes by using in vitro and in vivo methods . Toxicol Lett. , 191 ( 2–3 ) : 268 – 274 .
  • Shvedova , A. A. , Castranova , V. Kisin , E. R. 2003 . Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells . J. Toxicol. Environ. Health Part A , 66 : 1909 – 1926 .
  • Monteiro-Riviere , N. A. , Nemanich , R. J. Inman , A. O. 2005 . Multi-walled carbon nanotube interactions with human epidermal keratinocytes . Toxicol. Lett. , 155 : 377 – 384 .
  • Huczko , A. and Lange , H. 2001 . Carbon nanotubes: Experimental evidence for a null risk of skin irritation and allergy . Full. Sci. Techn. , 9 : 247 – 250 .
  • Harris , P. J.F. 1999 . Carbon Nanotubes and Related Structure , Cambridge , , U.K : Cambridge University Press . 1999
  • Muller , J. , Huaux , F. Moreau , N. 2005 . Respiratory toxicity of multi-wall carbon nanotubes . Toxicol. Appl. Pharmacol. , 207 : 221 – 231 .
  • Shvedova , A. A. , Kisin , E. R. Mercer , R. 2005 . Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice . Am. J. Physiol. Lung Cell. Mol. Physiol. , 289 ( 5 ) : L698 – L708 .
  • Lam , C.-W. , James , J. T. McCluskey , R. 2004 . Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation . Toxicol. Sci. , 77 : 126
  • Lam , C.-W. , James , J. R. McCluskey , R. 2006 . A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks . Crit. Rev. Toxicol. , 36 : 189 – 217 .
  • Pauluhn , J. 2010 . Multi-walled carbon nanotubes (Baytubes): Approach for derivation of occupational exposure limit . Regul. Toxicol. Pharmacol. , 57 : 78 – 89 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.