2,877
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting

, , , , , , & show all

REFERENCES

  • National Research Council (NRC): Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment. Washington, D.C.: The National Academies Press, 2007.
  • U.S. Government Accounting Office: Chemical Regulation: Options Exist to Improve EPA's Ability to Assess Health Risks and Manage its Chemical Review Program, 2005. Available at http://www.gao.gov/new.items/d05458.pdf) (accessed January 7, 2013).
  • National Research Council (NRC): Toxicity Testing in The 21st Century: A Vision and a Strategy. Washington, D.C.: The National Academies Press, 2007.
  • Kitano, H.: Computational systems biology. Nature 420(6912):206–210 (2002).
  • Kohl, P., E.J. Crampin, T.A. Quinn, and D. Noble: Systems biology: an approach. Clin. Pharmacol. Ther. 88(1):25–33 (2010).
  • Edwards, S.W., and R.J. Preston: Systems biology and mode of action based risk assessment. Toxicol. Sci. 106(2):312–318 (2008).
  • McHale, C.M., L. Zhang, A.E. Hubbard, and M.T. Smyth: Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat. Res. 705(3):172–183 (2010).
  • Holsapple, M.P., and K.B. Wallace: Dose response considerations in risk assessment–an overview of recent ILSI activities. Toxicol. Lett. 180(2):85–92 (2008).
  • National Research Council (NRC): Biological markers in environmental health research. Environ. Health Perspect. 74:3–9 (1987).
  • Schulte, P.A., and F.P. Perera: Validation. In Molecular Epidemiology: Principles and Practices, P.A. Schulte and F.P. Perera (eds.). San Diego, CA: Academic Press, 1993.
  • Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461(7261):218–223 (2009).
  • Aardema, M.J., and J.T. MacGregor: Toxicology and genetic toxicology in the new era of “toxicogenomics”: Impact of “-omics” technologies. Mutat. Res. 499(1):13–25 (2002).
  • Thomas, R.S., S.C. Wesselkamper, N.C. Wang et al.: Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Toxicol. Sci. 134(1):180–194 (2013).
  • Boogaard, P.J., S.M. Hays, and L.L. Aylward: Human biomonitoring as a pragmatic tool to support health risk management of chemicals: examples under the EU REACH programme. Regul. Toxicol. Pharmacol. 59(1):125–132 (2011).
  • Stephens, M.L.: An animal protection perspective on 21st century toxicology. J. Toxicol. Environ. Health B Crit. Rev. 13(2–4):291–298 (2010).
  • Andersen, M.E., and D. Krewski: Toxicity testing in the 21st century: bringing the vision to life. Toxicol. Sci. 107(2):324–330 (2009).
  • Krewski, D., M. Westphal, M. Al-Zoughool, M.C. Croteau, and M.E. Andersen: New directions in toxicity testing. Ann. Rev. Publ. Health 32:161–178 (2011).
  • Kavlock, R.J., G. Ankley, J. Blancato et al.: Computational toxicology: a state of the science mini review. Toxicol. Sci. 103(1):14–27 (2008).
  • Rusyn, I., and G.P. Daston: Computational toxicology: realizing the promise of the toxicity testing in the 21st century. Environ. Health Perspect. 118(8):1047–1050 (2010).
  • Reif, D.M., M.T. Martin, S.W. Tan et al.: Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ. Health Perspect. 118(12):1714–1720 (2010).
  • Judson, R.S., R.J. Kavlock, R.W. Setzer et al.: Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. Chem. Res. Toxicol. 24(4):451–62 (2011).
  • Thomas, R.S., H.J. Clewell, III, B.C. Allen et al.: Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment. Toxicol. Sci. 120(1):194–205 (2011).
  • Shah, I., and J. Wambaugh: Virtual tissues in toxicology. J. Toxicol. Environ. Health B Crit. Rev. 13(2–4):314–328 (2010).
  • Zhang, Q., S. Bhattacharya, M.E. Andersen, and R.B. Conolly: Computational systems biology and dose-response modeling in relation to new directions in toxicity testing. J. Toxicol. Environ. Health B Crit. Rev. 13(2–4):253–276 (2010).
  • Ruiz, P., M. Mumtaz, J. Osterloh, J. Fisher, and B.A. Fowler: Interpreting NHANES biomonitoring data, cadmium. Toxicol. Lett. 198(1):44–48 (2010).
  • Fowler, B.A.: Biomarkers in Toxicology and Risk Assessment. In Molecular, Clinical and Environmental Toxicology, A. Luch (ed.). Heidelberg, Germany: Springer Basel AG, 2012. pp. 459–470.
  • Fowler, B.A.: Computational Toxicology: Applications for Risk Assessment. Amsterdam, The Netherlands: Elsevier Publishers, 2013.
  • National Research Council (NRC): Science and Decisions: Advancing Risk Assessment. Washington, D.C.: The National Academies Press, 2009.
  • Cote, I., P.T. Anastas, L.S. Birnbaum et al.: Advancing the next generation of health risk assessment. Environ. Health Perspect. 120(11):1499–1502 (2012).
  • Dix, D.J., K.A. Houck, M.T. Martin, A.M. Richard, R.W. Setzer, and R.J. Kavlock: The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 95(1):5–12 (2007).
  • Casciano, D.A., and J. Woodcock: Empowering microarrays in the regulatory setting. Nat. Biotechnol. 24(9):1103 (2006).
  • Fostel, J.M.: Future of toxicogenomics and safety signatures: balancing public access to data with proprietary drug discovery. Pharmacogenomics 8(5):425–430 (2007).
  • Brown, P.O., and D. Botstein: Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21(1 Suppl):33–37 (1999).
  • Thomas, R.S., B.C. Allen, A. Nong et al.: A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. Toxicol. Sci. 98(1):240–248 (2007).
  • Aylward, L.L., and S.M. Hays: Biomonitoring-based risk assessment for hexabromocyclododecane (HBCD). Int. J. Hyg. Environ. Health 214(3):179–187 (2011).
  • Fukushige, S., and A. Horii: DNA methylation in cancer: a gene silencing mechanism and the clinical potential of its biomarkers. Tohoku J. Exp. Med. 229(3):173–185 (2013).
  • Wild, C.P.: Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14(8):1847–1850 (2005).
  • Lesko, L.J., and A.J. Atkinson, Jr.: Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Ann. Rev. Pharmacol. Toxicol. 41:347–366 (2001).
  • Mittal, S., A.K. Shah, D.T. Barkmeier, and J.A. Loeb: Systems biology of human epilepsy applied to patients with brain tumors. Epilepsia 54(Suppl 9):35–39 (2013).
  • Lusis, A.J., A.D. Attie, and K. Reue: Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9(11):819–830 (2008).
  • Wang, T., J.G. Garcia, and W. Zhang: Epigenetic regulation in particulate matter-mediated cardiopulmonary toxicities: a systems biology perspective. Curr. Pharmacogen. Person Med. 10(4):314–321 (2012).
  • Gangwal, S., J.S. Brown, A. Wang et al.: Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ. Health Perspect. 119(11):1539–1546 (2011).
  • Oberdörster, G.: Nanotoxicology: in vitro-in vivo dosimetry. Environ. Health Perspect. 120(1):A13 (2012); author reply A.
  • Donaldson, K., P.J. Borm, G. Oberdorster, K.E. Pinkerton, V. Stone, and C.L. Tran: Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal. Toxicol. 20(1):53–62 (2008).
  • Rushton, E.K., J. Jiang, S.S. Leonard et al.: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health A 73(5-6):445–461 (2010).
  • American Conference of Governmental Industrial Hygienists (ACGIH): “TLV/BEI Resources.” Available at http://www.acgih.org/TLV/ (accessed January 6, 2014).
  • Hays, S.M., L.L. Aylward, J.S. LaKind et al.: Guidelines for the derivation of biomonitoring equivalents: report from the Biomonitoring Equivalents Expert Workshop. Regul. Toxicol. Pharmacol. 51(3 Suppl):S4–S15 (2008).
  • Crump, K.S.: A new method for determining allowable daily intakes. Fundam. Appl. Toxicol. 4(5):854–871 (1984).
  • Crump, K.S.: Calculation of benchmark doses from continuous data. Risk Anal. 15(1):79–89 (1995).
  • U.S. Environmental Protection Agency: Benchmark Dose Technical Guidance. 2012. (http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf). (Accessed January 6, 2014).
  • Lohmueller, K.E., C.L. Pearce, M. Pike, E.S. Lander, and J.N. Hirschhorn: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33(2):177–182 (2003).
  • Demchuk, E., B. Yucesoy, V.J. Johnson et al.: A statistical model for assessing genetic susceptibility as a risk factor in multifactorial diseases: lessons from occupational asthma. Environ. Health Perspect. 115(2):231–234 (2007).
  • Scinicariello, F., A. Yesupriya, M.H. Chang, and B.A. Fowler: Modification by ALAD of the association between blood lead and blood pressure in the U.S. population: results from the Third National Health and Nutrition Examination Survey. Environ. Health Perspect. 118(2):259–264 (2010).
  • Renwick, A.G., and N.R. Lazarus: Human variability and noncancer risk assessment: an analysis of the default uncertainty factor. Regul. Toxicol. Pharmacol. 27(1):3–20 (1998).
  • U.S. Environmental Protection Agency: “A Review of The Reference Dose and Reference Concentration Processes.” 2002. Available at http://www.epa.gov/raf/publications/pdfs/rfd-final.pdf (accessed January 6, 2014).
  • Dourson, M., G. Charnley, and R. Scheuplein: Differential sensitivity of children and adults to chemical toxicity. II. Risk and regulation. Regul. Toxicol. Pharmacol. 35(3):448–467 (2002).
  • International Programme on Chemical Safety (IPCS): “Harmonization Project Document No. 2: Chemical-Specific Adjustment Factors for Interspecies Differences and Human Variability: Guidance Document for Use of Data in Dose/Concentration-Response Assessment.” 2005. Available at http://whqlibdoc.who.int/publications/2005/9241546786_eng.pdf (accessed January 7, 2014).
  • Samet, J.M., R. Schnatter, and H. Gibb: Epidemiology and risk assessment. Am. J. Epidemiol. 148(10):929–936 (1998).
  • Stayner, L.T., and R.J. Smith: Methodologic issues in using epidemiologic studies of occupational cohorts for cancer risk assessment. Epidemiol. Prev. 14(53):32–39 (1992).
  • Bogdanffy, M.S., G. Daston, E.M. Faustman et al.: Harmonization of cancer and noncancer risk assessment: proceedings of a consensus-building workshop. Toxicol. Sci. 61(1):18–31 (2001).
  • U.S. Environmental Protection Agency: Guidelines for Carcinogen Risk Assessment. Washington, D.C.: U.S. Environmental Protection Agency, 2005, publication no. Report #EPA/630/P-03/001b)
  • Boobis, A.R., J.E. Doe, B. Heinrich-Hirsch et al.: IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit. Rev. Toxicol. 38(2):87–96 (2008).
  • Haber, L.T., J.E. Strawson, A. Maier, I.M. Baskerville-Abraham, A. Parker, and M.L. Dourson: Noncancer Risk Assessment: Principles and Practice in Environmental and Occupational Settings. In Patty's Toxicology Sixth edition, E. Bingham, and B. Cohrssen (eds.). New York: John Wiley & Sons, Inc., 2012. pp. 89–132.
  • U.S. Department of Health and Human Services: Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. Cincinnati, OH: Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 2011, (Rice F publication no. 2011-160)
  • White, R.H., I. Cote, L. Zeise et al.: State-of-the-science workshop report: issues and approaches in low-dose-response extrapolation for environmental health risk assessment. Environ. Health Perspect. 117(2):283–287 (2009).
  • Rhomberg, L.R., J.E. Goodman, L.T. Haber et al.: Linear low-dose extrapolation for noncancer heath effects is the exception, not the rule. Crit. Rev. Toxicol. 41(1):1–19 (2011).
  • Crump, K.S., D.G. Hoel, C.H. Langley, and R. Peto: Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res. 36(9 pt.1):2973–9 (1976).
  • Lutz, W.K.: Susceptibility differences in chemical carcinogenesis linearize the dose-response relationship: threshold doses can be defined only for individuals. Mutat. Res. 482(1–2):71–76 (2001).
  • Jarabek, A.M.: Considerations of temporal toxicity challenges current default assumptions. Inhal. Toxicol. 7:927–946 (1995).
  • Kalberlah, F., U. Föst, and K. Schneider: Time extrapolation and interspecies extrapolation for locally acting substances in case of limited toxicological data. Ann. Occup. Hyg. 46(2):175–185 (2002).
  • Allen, B., A.M. Maier, A. Willis, and L.T. Haber: “Use of Early Effect Biomarker Data to Enhance Dose-Response Models of Lung Tumors in Rats Exposed to Titanium Dioxide.” Cincinnati, OH: Toxicology Excellence for Risk Assessment (TERA); 2013. Available at http://www.tera.org/Publications/Publications.html (accessed January 6, 2014).
  • Maier, A., R.E. Savage, Jr., and L.T. Haber: Assessing biomarker use in risk assessment–a survey of practitioners. J. Toxicol. Environ. Health A 67(8–10):687–695 (2004).
  • Kerr, M.K., and G.A. Churchill: Statistical design and the analysis of gene expression microarray data. Genet. Res. 77(2):123–128 (2001).
  • Stekel, D.: Microarray Bioinformatics. Cambridge, U.K.: Cambridge University Press, 2003.
  • Yang, L., B.C. Allen, and R.S. Thomas: BMDExpress: a software tool for the benchmark dose analyses of genomic data. BMC Genom. 8:387 (2007).
  • Filipsson, A.F., S. Sand, J. Nilsson, and K. Victorin: The benchmark dose method–review of available models, and recommendations for application in health risk assessment. Crit. Rev. Toxicol. 33(5):505–542 (2003).
  • Kanehisa, M., S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(Database issue):D355–360 (2010).
  • Bureeva, S., and Y. Nikolsky: Quantitative knowledge-based analysis in compound safety assessment. Expert. Opin. Drug Metab. Toxicol. 7(3):287–298 (2011).
  • Thomas, R.S., M.B. Black, L.Li et al.: A comprehensive statistical analysis of predicting in vivo hazard using high-throughput in vitro screening. Toxicol. Sci. 128(2):398–417 (2012).
  • Katabami, M., H. Dosaka-Akita, K. Honma et al.: Pneumoconiosis-related lung cancers: preferential occurrence from diffuse interstitial fibrosis-type pneumoconiosis. Am. J. Respir. Crit. Care Med. 162(1):295–300 (2000).
  • Schins, R.P., and A.M. Knaapen: Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19 Suppl 1:189–198 (2007).
  • Driscoll, K.E., L.C. Deyo, J.M. Carter, B.W. Howard, D.G. Hassenbein, and T.A. Bertram: Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18(2):423–430 (1997).
  • Kuempel, E.D., R.J. Smith, D.A. Dankovic, and L.T. Stayner: Rat- and human-based risk estimates of lung cancer from occupational exposure to poorly-soluble particles: a quantitative evaluation. J. Phys. Conf. Ser. 151:012011 (2009).
  • Conolly, R.B.: The use of biologically based modeling in risk assessment. Toxicology 181–182:275–279 (2002).
  • Hattis, D., P. Banati, and R. Goble: Distributions of individual susceptibility among humans for toxic effects. How much protection does the traditional tenfold factor provide for what fraction of which kinds of chemicals and effects?. Ann. NY Acad. Sci. 895:286–316 (1999).
  • Hattis, D., and K. Silver: Human interindividual variability–a major source of uncertainty in assessing risks for noncancer health effects. Risk Anal. 14(4):421–431 (1994).
  • Crump, K.S., C. Chen, W.A. Chiu et al.: What role for biologically based dose: response models in estimating low-dose risk?. Environ. Health Perspect. 118(5):585–588 (2010).
  • International Programme on Chemical Safety (IPCS): “Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment.” 2010. Available at http://www.who.int/ipcs/methods/harmonization/areas/pbpk_models.pdf (accessed January 7, 2014).
  • Hack, C.E., L.T. Haber, A. Maier et al.: A Bayesian network model for biomarker-based dose response. Risk Anal. 30(7):1037–1051 (2010).
  • Budinsky, R.A., E.L. LeCluyse, S.S. Ferguson, J.C. Rowlands, and T. Simon: Human and rat primary hepatocyte CYP1A1 and 1A2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 2,3,4,7,8-pentachlorodibenzofuran. Toxicol. Sci. 118(1):224–235 (2010).
  • Black, M.B., R.A. Budinsky, A. Dombkowski et al.: Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 127(1):199–215 (2012).
  • Dourson, M., R. Hertzberg, B. Allen et al.: Evidence-based dose-response assessment for thyroid tumorigenesis from acrylamide. Regul. Toxicol. Pharmacol. 52(3):264–289 (2008).
  • Demchuk, E., P. Ruiz, S. Chou, and B.A. Fowler: SAR/QSAR methods in public health practice. Toxicol. Appl. Pharmacol. 254(2):192–197 (2011).
  • Andersen, M.E., J.E. Dennison, R.S. Thomas, and R.B. Conolly: New directions in incidence-dose modeling. Trends Biotechnol. 23(3):122–127 (2005).
  • Woodruff, T., E. Wells, E. Holt, D.E. Burgin, and D.A. Axelrad: Estimating risk from ambient concentrations of acrolein across the United States. Environ. Health Perspect. 115(3):410–415 (2007).
  • U.S. Environmental Protection Agency: “Terminology Services.” 2012. Available at http://ofmpub.epa.gov/sor_internet/registry/termreg/home/overview/home.do (accessed January 7, 2014).
  • National Research Council (NRC): Human Biomonitoring for Environmental Chemicals. Washington, D.C.: The National Academies Press, 2006.
  • Collins, F.B., and V.S. Vaidya: Novel technologies for the discovery and quantitation of biomarkers of toxicity. Toxicology 245:167–174 (2008).
  • Kaddurah-Daouk, R., B.S. Kristal, and R.M. Weinshilboum: Metabolomics: a global biochemical approach to drug response and disease. Ann. Rev. Pharmacol. Toxicol. 48:653–683 (2008).
  • Wishart, D.S.: Applications of metabolomics in drug discovery and development. Drugs R&D 9(5):307–322 (2008).
  • U.S. Environmental Protection Agency: “Advancing the Next Generation (NexGen) of Risk Assessment.” 2013. Available at http://www.epa.gov/risk/nexgen/) (accessed January 7, 2014).
  • World Health Organization (WHO): “Environmental Health Criteria 222: Biomarkers in Risk Assessment: Validity and Validation.” 2001. Available at http://www.inchem.org/documents/ehc/ehc/ehc222.htm (accessed January 17, 2014).
  • U.S. Environmental Protection Agency: Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1994, publication no. Report #EPA/600/8-90/066F.