390
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Combining NSAM and CPC concentrations to determine airborne nanoparticle count median diameter: Application to various laboratory and workplace aerosols

, , , , , & show all

References

  • Savolainen, K., P. Pylkkänen, H. Norppa, et al.: Nanotechnologies, engineered nanomaterials and occupational health and safety – A review. Safety Sci. 48:957–963 (2011).
  • Shepard, M.N., and S. Brenner: An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Ann. Occup. Hyg. 58(2):251–265 (2013).
  • O'Shaughnessy, P.T.: Occupational health risk to nanoparticulate exposure. Environ. Sci.: Processes Impacts. 15:49–62 (2013).
  • Gordon, S.C., J.H. Butala, J.M. Carter, et al.: Workshop report: Strategies for setting occupational exposure limits for engineered nanomaterials. Regul. Toxicol. Pharm. 68:305–311 (2014).
  • Wang, J., C. Asbach, H. Fissan, et al.: How can nanobiotechnology oversight science and industry: Examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J. Nanopart. Res. 13:1373–1387 (2011).
  • Broday, D.M., and R. Rosenzweig: Deposition of fractal-like soot aggregates in the human respiratory tract. J. Aerosol Sci. 42:372–286 (2011).
  • ICRP: Publication 66: Human Respiratory Tract Model for Radiological Protection. Oxford: Pergamon, 1994.
  • Leskinen, J., J. Joutsensaari, J. Lyyränen, et al.: Comparison of nanoparticle measurement instruments for occupational health applications. J. Nanopart. Res. 14:718–733 (2012).
  • Woo, K.S., D.R. Chen, D.Y.H. Pui, and W.E. Wilson: Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci. Technol. 34:57–65 (2001).
  • Maynard, A.D.: Estimating aerosol surface-area from number and mass concentration measurements. Ann. Occup. Hyg. 47:123–144 (2003).
  • Park, J.Y., P.C. Raynor, A.D. Maynard, L.E. Eberly, and G. Ramachandran: Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles. Atmos. Environ. 43:502–509 (2009).
  • Park, J.Y., G. Ramachandran, P.C. Raynor, and S.W. Kim: Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. J. Nanopart. Res. 13:4897–4911 (2011).
  • Park, D., S. Kim, M. An, and J. Hwang: Real-time measurement of submicron aerosol particles having a lognormal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. J. Aerosol Sci. 38:1240–1245 (2007).
  • Pham, L., and H.S. Jung: Alternative metrics for spatially and temporally resolved ambient particle monitoring. J. Aerosol Sci. 102:96–104 (2016).
  • Bau, S., O. Witschger, F. Gensdarmes, and D. Thomas: Determining the count median diameter of nanoaerosols by simultaneously measuring their number and lung deposited surface area concentrations. J. Nanopart. Res. 15:2104 (2013).
  • Asbach, C., H. Fissan, B. Stahlmecke, T.A.J. Kuhlbusch, and D.Y.H. Pui: Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). J. Nanopart. Res. 11:101–109 (2009).
  • Fissan, H., S. Neumann, A. Trampe, D.Y.H. Pui, and W.G. Shin: Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J. Nanopart. Res. 9:53–59 (2007).
  • Shin, W.G., D.Y.H. Pui, H. Fissan, S. Neumann, and A. Trampe: Calibration and numerical simulation of Nanoparticle Surface Area Monitor (TSI model 3550 NSAM). J. Nanopart. Res. 9:61–69 (2007).
  • Mokhtar, M.A., R.E. Jayaratne, L. Morawska, M. Mazaheri, N. Surawski, and G. Buonanno: NSAM-derived total surface area versus SMPS-derived “mobility equivalent” surface area for different environmentally relevant aerosols. J. Aerosol Sci. 66:1–11 (2013).
  • Leavey, A., J. Fang, M. Sahu, and P. Biswas: Comparison of measured particle lung-deposited surface area concentrations by an AeroTrak 9000 using size distribution measurements for a range of combustion aerosols. Aerosol Sci. Technol. 47:966–978 (2013).
  • Bau, S., O. Witschger, F. Gensdarmes, and D. Thomas: Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes. J. Phys. Conf. Ser. 304:012015 (2011).
  • Bau, S., O. Witschger, F. Gensdarmes, and D. Thomas: Evaluating three direct-reading instruments based on diffusion charging to measure surface area concentrations in polydisperse nanoaerosols in molecular and transition regimes. J. Nanopart. Res. 14:1217–1233 (2012).
  • Todea, A.M., S. Beckmann, H. Kaminski, and C. Asbach: Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J. Aerosol Sci. 89:96–109 (2015).
  • Levin, M., O. Witschger, S. Bau, et al.: Can we trust real-time measurements of lung deposited surface area concentrations in dust from powder nanomaterials? Aerosol Air Qual. Res. 16:1105–1117 (2016).
  • Cao, L.N.Y., and D.Y.H. Pui: A novel weighted sum method to measure particle geometric surface area in real-time. J. Aerosol Sci. 117:11–23 (2018).
  • Asbach, C., C. Alexander, S. Clavaguera, et al.: Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci. Total Environ. 603–604:793–806 (2017).
  • Fierz, M., C. Houle, P. Steigmeier, and H. Burtscher: Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci. Technol. 45(1):1–10 (2011).
  • Marra, J., M. Voetz, and H.J. Kiesling: Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res. 12:21–37 (2010).
  • Marra, J.: Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics. J. Phys. Conf. Ser. 304(1):012010 (2011).
  • Fierz, M., D. Meier, P. Steigmeier, and H. Burtscher: Aerosol measurement by induced currents. Aerosol Sci. Technol. 48(4):350–357 (2014).
  • Fierz, M., D. Meier, P. Steigmeier, and H. Burtscher: Miniature nanoparticle sensors for exposure measurement and TEM sampling. J. Phys. Conf. Ser. 617:012034 (2015).
  • Todea, A.M., S. Beckmann, H. Kaminski, et al.: Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Sci. Total Environ. 605–606:929–945 (2017).
  • Bau, S., B. Zimmermann, R. Payet, and O. Witschger: Laboratory study of the performance of the miniature Diffusion Size Classifier (DiSCmini) for various aerosols in the 15–400 nm range. Environ. Sci. Process. Impacts. 17:261–269 (2015).
  • Asbach, C., V. Neumann, C. Monz, et al.: On the effect of wearing personal nanoparticle monitors on the comparability of personal exposure measurements. Environ. Sci. Nano. 4:233–243 (2017).
  • Hatch, T., and S.P. Choate: Statistical description of the size properties of non-uniform particulate substances. J. Franklin Inst. 207:369–387 (1929).
  • Harris, S.J., and M. Maricq: Signature size distributions for diesel and gasoline engine exhaust particulate matter. Aerosol Sci. Technol. 32:749–764 (2001).
  • Jacoby, J., S. Bau, and O. Witschger: CAIMAN: A versatile facility to produce aerosols of nanoparticles. J. Phys. Conf. Ser. 304:012014 (2011).
  • Monsé, C., C. Monz, D. Dahmann, et al.: Development and evaluation of a nanoparticle generator for human inhalation studies with airborne zinc oxide. Aerosol Sci. Technol. 48:418–426 (2014).
  • Heim, M., G. Kasper, G.P. Reischl, and C. Gerhart: Performance of a new commercial electrical mobility spectrometer. Aerosol Sci Technol. 38(S2):3–14 (2004).
  • Mordas, G., H.E. Manninen, T. Petäjä, P.P. Aalto, K. Hämeri, and M. Kulmala: On operation of the ultra-fine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007). Aerosol Sci. Technol. 42(2):152–158 (2008).
  • Witschger, O., R. Wrobel, B. Bianchi, and S. Bau: Potential for exposure during bagging operations in a plant that produces both pigment grade TiO2 and nano-TiO2 as powders. International Conference on Safe Production and use of nanomaterials (Nanosafe 2010), Grenoble, France, November 16–18, 2010.
  • Witschger, O., S. Bau, B. Bianchi, R. Wrobel, and V. Matera: Potential for exposure during cleanout operations of a reactor producing nanocomposite thin films embedded with silver nanoparticles. 5th International Symposium on Nanotechnology, Occupational and Environmental Health (NanOEH), Boston, USA, August 9–12, 2011.
  • Möhlmann, C., J. Pelzer, O. Witschger, S. Bau, and B. R'mili: Characterization of aerosols released during handling or processing operations of MWCNTs. International Congress on Safety of Engineered Nanoparticles and Nanotechnologies (SENN 2012), Helsinki, Finland, October 28–31, 2012.
  • Hinds, W.C.: Aerosol Technology. Properties, Behavior and Measurement of Airborne Particles (2nd ed.). New York: John Wiley & Sons, 1999. p. 483.
  • Todea, A.M., S. Beckmann, H. Kaminski, and C. Asbach: Accuracy of electrical sensors measuring lung deposited surface area concentrations. J. Aerosol Sci. 89:96–109 (2015).
  • Fissan, H., C. Asbach, H. Kaminski, and T.A.J. Kuhlbusch: Total surface area concentration measurements of nanoparticles in gases with an electrical sensor. Chemie Ingenieur Technik. 84:365–372 (2012).
  • Charvet, A., S. Bau, D. Bémer, and D. Thomas: On the importance of density in ELPI data post-treatment. Aerosol Sci. Technol. 49:1263–1270 (2015).
  • Buonanno, G., L. Morawska, and L. Stabile: Exposure to welding particles in automotive plants. J. Aerosol Sci. 42:295–304 (2011).
  • Cheng, Y.H., Y.C. Chao, C.H. Wu, C.J. Tsai, S.N. Uang, and T.S. Shih: Measurements of ultrafine particle concentrations and size distributions in an iron foundry. J. Hazard. Mater. 158:124–130 (2008).
  • McGarry, P., S. Clifford, L.D. Knibbs, C. He, and L. Morawska: Application of multi-metric approach to characterization of particle emissions from nanotechnology and non-nanotechnology processes. J. Occup. Environ. Hyg. 13:D175–D197 (2016).
  • Gomes, J.F., P.C. Albuquerque, R.M. Miranda, T.G. Santos, and M.T. Vieira: Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes. Inhal. Toxicol. 24(11):774–781 (2012).
  • Avino, P., M. Manigrasso, P. Pandolfi, C. Tornese, D. Settimi, and N. Paolucci: Submicron particles during macro- and micro-weldings procedures in industrial indoor environments and health implications for welding operators. Metals. 2015(5):1045–1060 (2015).
  • Wang, Y.F., P.J. Tsai, C.W. Chen, D.R. Chen, and D.J. Hsu: Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. Environ. Sci. Technol. 44:6767–6774 (2010).
  • Sillanpää, M., M.D. Geller, H.C. Phuleria, and C. Sioutas: High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). J. Aerosol Sci. 39:335–347 (2008).
  • Westerdahl, D., X. Wang, X. Pan, and K.M. Zhang: Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmos. Environ. 43:697–705 (2009).
  • Buonanno, G., L. Morawska, L. Stabile, and A. Viola: Exposure to particle number, surface area and PM concentrations in pizzerias. Atmos. Environ. 44:3963–3969 (2010).
  • Okuda, T., H. Yamazaki, K. Hatoya, et al.: Factors controlling the variation of aerosol surface area concentrations measured by a diffusion charger in Fukuoka, Japan. Atmosphere 7(33): doi: 10.3390/atmos7030033 (2016).
  • Reche, C., M. Viana, M. Brines, et al.: Determinants of aerosol lung-deposited surface area variation in an urban environment. Sci. Total Environ. 517:38–47 (2015).
  • Kuuluvainen, H., T. Rönkkö, A. Järvinen, et al.: Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos. Environ. 136:105–113 (2016).
  • Li, L., Z. Zuo, D.A. Japuntich, and D.Y.H. Pui: Evaluation of filter media for particle number, surface area and mass penetrations. Ann. Occup. Hyg. 56(5):581–594 (2012).
  • Koivisto, A.J., M. Aromaa, I.K. Koponen, et al.: Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis. J. Nanopart. Res. 17:177 (2015).
  • Geiss, O., I. Bianchi, and J. Barrero-Moreno: Lujng-deposited surface area concentration measurements in selected occupational and non-occupational environments. J. Aerosol Sci. 96:24–37 (2016).
  • Asbach, C., H. Kaminski, H. Fissan, et al.: Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J. Nanopart. Res. 11:1593–1609 (2009).
  • Dahmann, D., G. Riediger, J. Schlatter, et al.: Intercomparison of mobility particle sizers (MPS). Gefahrstoffe, Reinhaltung der Luft. 61(10):423–428 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.