1,195
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Yokel, R.A., and R.C. MacPhail: Engineered nanomaterials: Exposures, hazards, and risk prevention. J. Occup. Med. Toxicol. 6(7):1–27 (2011).
  • Boyes, W.K., B.L.M. Thornton, S.R. Al-Abed, et al.: A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit. Rev. Toxicol. 47(9):767–810 (2017).
  • Mattsson, M.O., and M. Simko: The changing face of nanomaterials: Risk assessment challenges along the value chain. Regul. Toxicol. Pharmacol. 84:105–115 (2017).
  • Grassian, V.H., A.J. Haes, I.A. Mudunkotuwa, et al.: NanoEHS - Defining fundamental science needs: No easy feat when the simple itself is complex. Environ. Sci.: Nano 3:15–27 (2015).
  • Hendren, C.O., G.V. Lowry, J.M. Unrine, and M.R. Wiesner: A functional assay-based strategy for nanomaterial risk forecasting. Sci. Total Environ. 536:1029–1037 (2015).
  • Brouwer, D.: Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2-3):120–127 (2010).
  • Curwin, B., and S. Bertke: Exposure characterization of metal oxide nanoparticles in the workplace. J. Occup. Environ. Hyg. 8(10):580–587 (2011).
  • Kuhlbusch, T.A.J., C. Asbach, H. Fissan, D. Gohler, and M. Stintz: Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 8(22):1–18 (2011).
  • Ding, Y., T.A.J. Kuhlbusch, M. Van Tongeren, et al.: Airborne engineered nanomaterials in the workplace—A review of release and worker exposure during nanomaterial production and handling processes. J. Hazard. Mat. 322:17–28 (2017).
  • Park, J.H., I.A. Mudunkotuwa, L.W.D. Mines, T.R. Anthony, V.H. Grassian, and T.M. Peters: A granular bed for use in a nanoparticle respiratory deposition sampler. Aerosol Sci. Technol. 49(3):179–187 (2015).
  • Mines, L.W.D., J.H. Park, I.A. Mudunkotuwa, T.R. Anthony, V.H. Grassian, and T.M. Peters: Porous polyurethane foam for use as a particle collection substrate in a nanoparticle respiratory deposition sampler. Aerosol Sci. Technol. 50(5):497–506 (2016).
  • Asbach, C., C. Alexander, S. Clavaguera, et al.: Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci. Total Environ. 603:793–806 (2017).
  • Ham, S., S. Kim, N. Lee, et al.: Comparison of nanoparticle exposure levels based on facility type—Small-scale laboratories, large-scale manufacturing workplaces, and unintended nanoparticle-emitting workplaces. Aerosol Air Qual. Res. 15(5):1967–1978 (2015).
  • Berlinger, B., N. Benker, S. Weinbruch, et al.: Physicochemical characterisation of different welding aerosols. Anal. Bioanal. Chem. 399(5):1773–1780 (2011).
  • Baker, M.G., S.R. Criswell, B.A. Racette, et al.: Neurological outcomes associated with low-level manganese exposure in an inception cohort of asymptomatic welding trainees. Scand. J. Work Environ. Health. 41(1):94–101 (2015).
  • Thomassen, Y., W. Koch, W. Dunkhorst, et al.: Ultrafine particles at workplaces of a primary aluminium smelter. J. Environ. Monitor. 8(1):127–133 (2006).
  • Weinbruch, S., N. Benker, K. Kandler, et al.: Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters. Anal. Bioanal. Chem. 408(4):1151–1158 (2016).
  • Santos, R.J., and M.T. Vieira: Assessment of airborne nanoparticles present in industry of aluminum surface treatments. J. Occup. Environ. Hyg. 14(3):D29–D36 (2017).
  • Ono-Ogasawara, M., F. Serita, and M. Takaya: Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J. Nanopart. Res. 11(7):1651–1659 (2009).
  • Elihn, K., and P. Berg: Ultrafine particle characteristics in seven industrial plants. Ann. Occup. Hyg. 53(5):475–484 (2009).
  • Bemer, D., R. Regnier, I. Subra, B. Sutter, M.T. Lecler, and Y. Morele: Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals. Ann. Occup. Hyg. 54(6):607–614 (2010).
  • Robertson, S., and M.R. Miller: Ambient air pollution and thrombosis. Part. Fibre Toxicol. 15(1):1–16 (2018).
  • Araujo, J.A., and A.E. Nel: Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part. Fibre Toxicol. 6(24):1–19 (2009).
  • Hoek, G., R.M. Krishnan, R. Beelen, et al.: Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health. 12(43):1–15 (2013).
  • Rao, X.Q., J.X. Zhong, R.D. Brook, and S. Rajagopalan: Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid. Redox Signaling 28:797–818 (2017).
  • Vignal, C., M. Pichavant, L.Y. Alleman, et al.: Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part. Fibre Toxicol. 14(46):1–13 (2017).
  • Meldrum, K., C. Guo, E.L. Marczylo, T.W. Gant, R. Smith, and M.O. Leonard: Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part. Fibre Toxicol. 14(45):1–35 (2017).
  • Pope, C.A., and D.W. Dockery: Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56(6):709–742 (2006).
  • Ruckerl, R., A. Schneider, S. Breitner, J. Cyrys, and A. Peters: Health effects of particulate air pollution: A review of epidemiological evidence. Inhalation Toxicol. 23(10):555–592 (2011).
  • Heal, M.R., P. Kumar, and R.M. Harrison: Particles, air quality, policy and health. Chem. Soc. Rev. 41(19):6606–6630 (2012).
  • Cheng, H., A. Saffari, C. Sioutas, H.J. Forman, T.E. Morgan, and C.E. Finch: Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ. Health Perspect. 124(10):1537–1546 (2016).
  • Cassee, F.R., M.E. Heroux, M.E. Gerlofs-Nijland, and F.J. Kelly: Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation Toxicol. 25(14): 802–812 (2013).
  • Maher, B.A., I.A.M. Ahmed, V. Karloukovski, et al.: Magnetite pollution nanoparticles in the human brain. Proceed. Nat. Acad. Sci. 113(39):10797–10801 (2016).
  • Calderon-Garciduenas, L., B. Azzarelli, H. Acuna, et al.: Air pollution and brain damage. Toxicol. Pathol. 30(3):373–389 (2002).
  • Dorman, D.C., K.A. Brenneman, A.M. McElveen, S.E. Lynch, K.C. Roberts, and B.A. Wong: Olfactory transport: A direct route of delivery of inhaled manganese phosphate to the rat brain. J. Toxicol. Environ. Health-Part A 65(20):1493–1511 (2002).
  • Oberdorster, G., Z. Sharp, V. Atudorei, et al.: Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol. 16(6-7):437–445 (2004).
  • Gonzalez, L.T., F.E.L. Rodriguez, M. Sanchez-Dominguez, et al.: Determination of trace metals in TSP and PM2.5 materials collected in the metropolitan area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmosph. Res. 196:8–22 (2017).
  • Jelenska, M., B. Gorka-Kostrubiec, T. Werner, et al.: Evaluation of indoor/outdoor urban air pollution by magnetic, chemical and microscopic studies. Atmos. Pollut. Res. 8(4):754–766 (2017).
  • Yang, Y., M. Vance, F.Y. Tou, A. Tiwari, M. Liu, and M.F. Hochella: Nanoparticles in road dust from impervious urban surfaces: distribution, identification, and environmental implications. Environ. Sci.-Nano 3(3):534–544 (2016).
  • Sanderson, P., S.S. Su, I.T.H. Chang, et al.: Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment. Atmos. Environ. 140:167–175 (2016).
  • Ashley, K.: "Elements by ICP (microwave digestion), method 7302". NIOSH Manual of Analytical Methods (NMAM), 2016. Available at https://www.cdc.gov/niosh/docs/2014-151/pdfs/methods/7302.pdf (accessed May 9, 2018).
  • Amaral, S.S., J.A. de Carvalho, M.A.M. Costa, and C. Pinheiro: An overview of particulate matter measurement instruments. Atmosphere 6(9):1327–1345 (2015).
  • Park, J.H., I.A. Mudunkotuwa, K.J. Crawford, T.R. Anthony, V.H. Grassian, and T.M. Peters: Rapid analysis of the size distribution of metal-containing aerosol. Aerosol Sci. Technol. 51(1):108–115 (2017).
  • Peters, T.M., S. Elzey, R. Johnson, et al.: Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J. Occup. Environ. Hyg. 6(2):73–81 (2009).
  • Stebounova, L.V., N.I. Gonzalez-Pech, J.H. Park, T.R. Anthony, T.M. Peters, and V.H. Grassian: Particle concentrations in occupational settings measured with a Nanoparticle Respiratory Deposition (NRD) sampler. Ann. Work Exposure Health 65(6):699–710(2018).
  • Stanislawska, M., T. Halatek, M. Cieslak, et al.: Coarse, fine and ultrafine particles arising during welding - Analysis of occupational exposure. Microchem. J. 135:1–9 (2017).
  • Ault, A.P., T.M. Peters, E.J. Sawvel, et al.: Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: Sources and distribution of iron within Cleveland, Ohio. Environ. Sci. Technol. 46(8):4331–4339 (2012).
  • Friel, J.J., and C.E. Lyman: X-ray mapping in electron-beam instruments. Microsc. Microanal. 12(1):2–25 (2006).
  • “Guide to casting and molding processes.” Available at https://pdfs.semanticscholar.org/2fa7/9ad6d87450d1f12ffb718ed58199b1bc7240.pdf (accessed May 9, 2018).
  • Loizaga, A., J. Sertucha, and R. Suarez: Influence of treatments using different magnesium ferroalloys on the melt quality and the solidification processes of ductile irons. Rev. Metal. 44(5):432–446 (2008).
  • Lecoanet, H.F., J.Y. Bottero, and M.R. Wiesner: Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 38(19):5164–5169 (2004).
  • Goudeli, E., M.L. Eggersdorfer, and S.E. Pratsinis: Coagulation of agglomerates consisting of polydisperse primary particles. Langmuir 32(36):9276–9285 (2016).
  • Goudeli, E., M.L. Eggersdorfer, and S.E. Pratsinis: Coagulation-agglomeration of fractal-like particles: structure and self-preserving size distribution. Langmuir 31(4):1320–1327 (2015).
  • Kim, S.C., J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland, and D.Y.H. Pui: Structural property effect of nanoparticle sgglomerates on particle penetration through fibrous filter. Aerosol Sci. Technol. 43(4):344–355 (2009).
  • Hofmann, W.: Modelling inhaled particle deposition in the human lung—A review. J. Aerosol Sci. 42(10):693–724 (2011).
  • Calmet, H., C. Kleinstreuer, G. Houzeaux, et al.: Subject-variability effects on micron particle deposition in human nasal cavities. J. Aerosol Sci. 115: 12–28 (2018).
  • Tantra, R., J. Tompkins, and P. Quincey: Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloids Surf. B. 75(1):275–281 (2010).
  • Ding, X., and F. Xie: 3. Olfactory mucosa: composition, enzymatic localization, and metabolism. In Handbook of Olfaction and Gustation, R.L. Doty (ed.). Hoboken, NJ: John Wiley & Sons, Inc, 2015.
  • Cena, L.G., T.R. Anthony, and T.M. Peters: A personal nanoparticle respiratory deposition (NRD) sampler. Environ. Sci. Technol. 45(15): 6483–6490 (2011).
  • Byeon, J.H., J.H. Park, and J.H. Hwang: Spark generation of monometallic and bimetallic aerosol nanoparticles. J. Aerosol Sci. 39(10):888–896 (2008).
  • Therezien, M., A. Thill, and M.R. Wiesner: Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Sci. Total Environ. 485:309–318 (2014).
  • Hotze, E.M., J.Y. Bottero, and M.R. Wiesner: Theoretical framework for nanoparticle reactivity as a function of aggregation state. Langmuir 26(13):11170–11175 (2010).
  • Jassby, D., J.F. Budarz, and M. Wiesner: Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 46(13):6934–6941 (2012).
  • Pettibone, J.M., A. Adamcakova-Dodd, P.S. Thorne, P.T. O'Shaughnessy, J.A. Weydert, and V.H. Grassian: Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology 2(4):189–204 (2008).
  • Stebounova, L.V., N.I. Gonzalez-Pech, T.M. Peters, and V.H. Grassian: Physicochemical properties of air discharge-generated manganese oxide nanoparticles: Comparison to welding fumes. Environ. Sci.: Nano 5:696–707 (2018).
  • Madl, A.K., and K.E. Pinkerton: Health effects of inhaled engineered and incidental nanoparticles. Crit. Rev. Toxicol. 39(8):629–658 (2009).
  • Adamcakova-Dodd, A., L.V. Stebounova, J.S. Kim, et al.: Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fibre Toxicol. 11(15):1–15 (2014).
  • Park, J.H., I.A. Mudunkotuwa, J.S. Kim, et al.: Physicochemical characterization of simulated welding fumes from a spark discharge system. Aerosol Sci. Technol. 48(7):768–776 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.