764
Views
0
CrossRef citations to date
0
Altmetric
Report

Personal exposure to gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) and nanoparticles and lung deposited surface area (LDSA) for soot among Norwegian chimney sweepers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Afshar-Mohajer N, Foos R, Volckens J, Ramachandran G. 2020. Variability of aerosol mass and number concentrations during taconite mining operations. J Occup Environ Hyg. 17(1):1–14. doi: 10.1080/15459624.2019.1688823.
  • Alhamdow A, Essig YJ, Krais AM, Gustavsson P, Tinnerberg H, Lindh CH, Hagberg J, Graff P, Albin M, Broberg K. 2020. Fluorene exposure among PAH-exposed workers is associated with epigenetic markers related to lung cancer. Occup Environ Med. 77(7):488–495. doi: 10.1136/oemed-2020-106413.
  • Alhamdow A, Gustavsson P, Rylander L, Jakobsson K, Tinnerberg H, Broberg K. 2017. Chimney sweeps in Sweden: a questionnaire-based assessment of long-term changes in work conditions, and current eye and airway symptoms. Int Arch Occup Environ Health. 90(2):207–216. doi: 10.1007/s00420-016-1186-7.
  • Alhamdow A, Lindh C, Albin M, Gustavsson P, Tinnerberg H, Broberg K. 2017. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons. Sci Rep. 7(1):9426. doi: 10.1038/s41598-017-09956-x.
  • Andersson K. 1987. Skorstensfejares exponering för damm, PAH, metaller, och asbest (Chimney sweeps’ exposure to dust, PAH, metals, and asbestos). Swedish Environmental Research Institute (in Swedish). https://ivl.diva-portal.org/smash/get/diva2:1550409/FULLTEXT01.pdf
  • Bémer D, Bau S. 2019. Using a DiSCmini classifier for real-time determination of ultrafine particle mass concentration—application to diesel particle measurement. J Nanopart Res. 21(2):41. doi: 10.1007/s11051-019-4483-8.
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 175(3):191–199. doi: 10.1006/taap.2001.9240.
  • Cirla PE, Martinotti I, Buratti M, Fustinoni S, Campo L, Zito E, Prandi E, Longhi O, Cavallo D, Foà V. 2007. Assessment of exposure to polycyclic aromatic hydrocarbons (PAH) in Italian asphalt workers. J Occup Environ Hyg. 4(supp1):87–99. doi: 10.1080/15459620701354325.
  • Dutch Expert Committee on Occupational Standards (DECOS). 2006. BaP and PAH from coal-derived sources. https://www.healthcouncil.nl/binaries/healthcouncil/documenten/advisory-reports/2006/02/21/bap-and-pah-from-coal-derived-sources/advisory-report-bap-and-pah-from-coal-derived-sources.pdf.
  • Elihn K, Ulvestad B, Hetland S, Wallén A, Randem BG. 2008. Exposure to ultrafine particles in asphalt work. J Occup Environ Hyg. 5(12):771–779. doi: 10.1080/15459620802473891.
  • Elsaesser A, Howard CV. 2012. Toxicology of nanoparticles. Adv Drug Deliv Rev. 64(2):129–137. doi: 10.1016/j.addr.2011.09.001.
  • European Committee for Standardization. 2018. Test method to measure the efficiency of air filtration media against spherical nanomaterials Part 1: size range from 20 nm to 500 nm (ISO 21083-1:2018).
  • Fierz M, Houle C, Steigmeier P, Burtscher H. 2011. Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci Tech. 45(1):1–10. doi: 10.1080/02786826.2010.516283.
  • Fierz M, Meier D, Steigmeier P, Burtscher H. 2014. Aerosol measurement by induced currents. Aerosol Sci Tech. 48(4):350–357. doi: 10.1080/02786826.2013.875981.
  • Freund A, Zuckerman N, Baum L, Milek D. 2012. Submicron particle monitoring of paving and related road construction operations. J Occup Environ Hyg. 9(5):298–307. doi: 10.1080/15459624.2012.672924.
  • Hogstedt C, Jansson C, Hugosson M, Tinnerberg H, Gustavsson P. 2013. Cancer incidence in a cohort of Swedish chimney sweeps, 1958–2006. Am J Public Health. 103(9):1708–1714. doi: 10.2105/AJPH.2012.300860.
  • International Agency for Research on Cancer (IARC). 2012. Soot, as found in occupational exposure of chimney sweeps chemical agents and related occupations. IARC working group on the evaluation of carcinogenic risks to humans, vol. 100F, p. 1–599.
  • ICRP. 1994. Human respiratory tract model for radiological protection. Ann ICRP. 24. Pergamon. https://journals.sagepub.com/doi/pdf/10.1177/ANIB_24_1-3
  • Jørgensen RB, Buhagen M, Føreland S. 2016. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med. 73(7):467–473. doi: 10.1136/oemed-2015-103411.
  • Jørgensen RB, Kero IT, Blom A, Grove EE, Svendsen K. 2020. Exposure to ultrafine particles in the ferroalloy industry using a logbook method. Nanomaterials (Basel). 10(12):2546. doi: 10.3390/nano10122546.
  • Knecht U, Bolm-Audorff U, Woitowitz HJ. 1989. Atmospheric concentrations of polycyclic aromatic hydrocarbons during chimney sweeping. Br J Ind Med. 46(7):479–482. doi: 10.1136/oem.46.7.479.
  • Kuuluvainen H, Rönkkö T, Järvinen A, Saari SE, Karjalainen P, Lähde T, Pirjola L, Niemi JV, Hillamo R, Keskinen J. 2016. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos Environ. 136:105–113. doi: 10.1016/j.atmosenv.2016.04.019.
  • Liang XW, Xu ZP, Grice J, Zvyagin AV, Roberts MS, Liu X. 2013. Penetration of nanoparticles into human skin. Curr Pharm Des. 19(35):6353–6366. doi: 10.2174/1381612811319350011.
  • Liu NM, Miyashita L, Maher BA, McPhail G, Jones CJP, Barratt B, Thangaratinam S, Karloukovski V, Ahmed IA, Aslam Z, et al. 2021. Evidence for the presence of air pollution nanoparticles in placental tissue cells. Sci Total Environ. 751:142235. doi: 10.1016/j.scitotenv.2020.142235.
  • Moazami TN, Svendsen K, Buhagen M, Jørgensen RB. 2023. Comparing PM2.5, respirable dust, and total dust fractions using real-time and gravimetric samples in an exposure chamber study. Heliyon. 9:e16127. doi: 10.2139/ssrn.4325619.
  • Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X. 2008. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing, and implications on human exposure. Atmos Environ. 42(35):8113–8138. doi: 10.1016/j.atmosenv.2008.07.050.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113(7):823–839. doi: 10.1289/ehp.7339.
  • Olsson A, Guha N, Bouaoun L, Kromhout H, Peters S, Siemiatycki J, Ho V, Gustavsson P, Boffetta P, Vermeulen R, et al. 2022. Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: results from a pooled analysis of case–control studies (SYNERGY). Cancer Epidemiol Biomarkers Prev. 31(7):1433–1441. doi: 10.1158/1055-9965.EPI-21-1428.
  • Pukkala E, Martinsen JI, Lynge E, Gunnarsdottir HK, Sparén P, Tryggvadottir L, Weiderpass E, Kjaerheim K. 2009. Occupation and cancer—follow-up of 15 million people in five Nordic countries. Acta Oncol. 48(5):646–790. doi: 10.1080/02841860902913546.
  • Santos PM, del Nogal Sánchez M, Pavón JLP, Cordero BM. 2019. Determination of polycyclic aromatic hydrocarbons in human biological samples: a critical review. Trends Analyt Chem. 113:194–209. doi: 10.1016/j.trac.2019.02.010.
  • Sjaastad AK, Svendsen K. 2009. Exposure to polycyclic aromatic hydrocarbons (PAHs), mutagenic aldehydes, and particulate matter in Norwegian a la carte restaurants. Ann Occup Hyg. 53(7):723–729. doi: 10.1093/annhyg/mep059.
  • Swedish Work Environment Authority. 2018. Hygieniska gränsvärden (AFS 2018:1) (in Swedish).
  • The Norwegian Labor Inspection Authority. 2010. Grunnlag for fastsettelse av administrativ norm for polysykliske aromatiske hydrokarboner (PAH) (Basis for determining administrative norms for polyarmoatic hydrocarbons (PAH) (in Norwegian).
  • Trojanowski R, Fthenakis V. 2019. Nanoparticle emissions from residential wood combustion: a critical literature review, characterization, and recommendations. Renew Sust Energ Rev. 103:515–528. doi: 10.1016/j.rser.2019.01.007.
  • Van Broekhuizen P, Van Veelen WIM, Streekstra W-H, Schulte P, Reijnders L. 2012. Exposure limits for nanoparticles: report of an International Workshop on Nano Reference Values. Ann Occup Hyg. 56(5):515–524. doi: 10.1093/annhyg/mes043.
  • Viana M, Rivas I, Reche C, Fonseca AS, Pérez N, Querol X, Alastuey A, Álvarez-Pedrerol M, Sunyer J. 2015. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmos Environ. 123:220–228. doi: 10.1016/j.atmosenv.2015.10.076.
  • Vora A, Chalbot MCG, Shin JY, Kavouras IG. 2021. Size distribution and lung deposition of particle mass generated by indoor activities. Indoor Built Environ. 30(9):1344–1352. doi: 10.1177/1420326X20939249.
  • Yacobi NR, Fazllolahi F, Kim YH, Sipos A, Borok Z, Kim KJ, Crandall ED. 2011. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. Air Qual Atmos Health. 4(1):65–78. doi: 10.1007/s11869-010-0098-z.