2,371
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Silver nanoparticle immunomodulatory potential in absence of direct cytotoxicity in RAW 264.7 macrophages and MPRO 2.1 neutrophils

, , , , &
Pages 63-73 | Received 28 Dec 2018, Accepted 26 Feb 2019, Published online: 08 Jul 2019

References

  • Albanese A, Tang P, Chan W. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 14:1–16.
  • Aldossari A, Shannahan J, Podila R, Brown J. 2015. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro. 29:195–203.
  • Alsaleh N, Brown J. 2018. Immune responses to engineered nanomaterials: Current understanding and challenges. Curr Opin Toxicol. 10:8–14.
  • Alsaleh N, Persaud I, Brown J. 2016. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One. 11:e0167366.
  • Andersson-Willman B, Gehrmann U, Cansu Z, Buerki-Thurnherr T, Krug HF, Gabrielsson S, Scheynius A. 2012. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicol Appl Pharmacol. 264:94–103.
  • Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol. 55:373–399.
  • Arai Y, Miyayama T, Hirano S. 2015. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology. 328:84–92.
  • Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, Porter D, Elder A, Oberdörster G, Harkema JR, et al. 2013. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environ Health Perspect. 121:676–682.
  • Buzea C, Pacheco I, Robbie K. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2:MR17–MR71.
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B. 112:13608–13619.
  • Comfort K, Maurer E, Braydich-Stolle L, Hussain S. 2011. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5:10000–10008.
  • de Jong W, van Der Ven L, Sleijffers A, Park M, Jansen E, van Loveren H, Vandebriel R. 2013. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats . Biomaterials. 34:8333–8343.
  • DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. 2016. Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact. 2:70–81.
  • Dobrovolskaia M, McNeil S. 2007. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2:469–478.
  • Dobrovolskaia M, Shurin M, Shvedova A. 2016. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 299:78–89.
  • Droge W. 2002. Free radicals in physiological control of cell function. Physiol Rev. 82:47–95.
  • Fraser J, Kemp S, Young L, Ross M, Prach M, Hutchison G, Malone E. 2018. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci Reports. 8:7506.
  • Fu P, Xia Q, Hwang H, Ray P, Yu H. 2014. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal. 22:64–75.
  • Gaines P, Chi J, Berliner N. 2005. Heterogeneity of functional responses in differentiated myeloid cell lines reveals EPRO cells as a valid model of murine neutrophil functional activation. J. Leukoc. Biol. 77:669–679.
  • Gatoo M, Naseem S, Arfat M, Dar A, Qasim K, Zubair S. 2014. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Intl. 2014:1.
  • Giovanni M, Yue J, Zhang L, Xie J, Ong C, Leong D. 2015. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. J Hazard Mat. 297:146–152.
  • Gustafson H, Holt-Casper D, Grainger D, Ghandehari H. 2015. Nanoparticle uptake: The phagocyte problem. Nano Today. 10:487–510.
  • Hamilton R, Buckingham S, Holian A. 2014. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. Intl J Molec Sci. 15:6815–6830.
  • Hayashi Y, Engelmann P, Foldbjerg R, Szabó M, Somogyi I, Pollák E, Molnár L, Autrup H, Sutherland DS, Scott-Fordsmand J, et al. 2012. Earthworms and humans in vitro: Characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol. 46:4166–4173.
  • Jones D, Liang Y. 2009. Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med. 47:1329–1338.
  • Kettiger H, Schipanski A, Wick P, Huwyler J. 2013. Engineered nanomaterial uptake and tissue distribution: From cell to organism. Intl J Nanomed. 8:3255–3269.
  • Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks A. 2014. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 33:481–492.
  • Kim Y, Kim J, Cho H, Rha D, Kim J, Park J, Choi B, Lim R, Chang H, Kwon I. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 20:575–583.
  • Kodali V, Littke M, Tilton S, Teeguarden J, Shi L, Frevert C, Wang W, Pounds J, Thrall B. 2013. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano. 7:6997–7010.
  • Kong B, Seog J, Graham L, Lee S. 2011. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 6:929–941.
  • Kumar H, Kawai T, Akira S. 2011. Pathogen recognition by the innate immune system. Intl Rev Immunol. 30:16–34.
  • Lappas C. 2015. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem Toxicol. 85:78–83.
  • Lim D, Jang J, Kim S, Kang T, Lee K, Choi I. 2012. Effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials. 33:4690–4699.
  • Liz R, Simard J, Leonardi L, Girard D. 2015. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Intl Immuno-Pharmacol. 28:616–625.
  • Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Intl. 2013:1.
  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann M. 2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 38:1404–1413.
  • Medzhitov R, Janeway C. 1997. Innate immunity: Impact on the adaptive immune response. Curr. Opin Immunol. 9:4–9.
  • Muller L, Steiner S, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Latzin P. 2018. Exposure to silver nanoparticles affects viability and function of natural killer cells, mostly via the release of ions. Cell Biol Toxicol. 34:167–176.
  • Nel A, Madler L, Velegol D, Xia T, Hoek E, Somasundaran P, Klaessig F, Castranova V, Thompson M. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 8:543–557.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311:622–627.
  • Park E, Bae E, Yi J, Kim Y, Choi K, Lee S, Yoon J, Lee B, Park K. 2010. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 30:162–168.
  • Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. 2011a. Effect of particle size on the cytotoxicity, inflammation, developmental toxicity, and genotoxicity of silver nanoparticles. Biomaterials. 32:9810–9817.
  • Park K, Park E, Chun I, Choi K, Lee S, Yoon J, Lee B. 2011b. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res. 34:153–158.
  • Poirier M, Simard JC, Antoine F, Girard D. 2014. Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils:induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates. J Appl Toxicol. 34:404–412.
  • Poirier M, Simard J, Girard D. 2016. Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils. J Immunotoxicol. 13:375–385.
  • Ramos A, Cruz M, Tovani C, Ciancaglini P. 2017. Biomedical applications of nanotechnology. Biophys Rev. 9:79–89.
  • Sarantis H, Gray-Owen S. 2012. Defining roles of human carcinoembryonic antigen-related cellular adhesion molecules during neutrophil responses to Neisseria gonorrhoeae. Infect Immunity. 80:345–358.
  • Schug T, Nadadur S, Johnson A. 2013. Nano GO Consortium - a team science approach to assess engineered nanomaterials: Reliable assays and methods. Environ Health Perspect. 121:A176–A177.
  • Seydoux E, Rothen-Rutishauser B, Nita I, Balog S, Gazdhar A, Stumbles P. 2014. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. Intl J Nanomed. 9:3885–3902.
  • Shavandi Z, Ghazanfari T, Moghaddam K. 2011. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol Immunotoxicol. 33:135–140.
  • Shvedova A, Kagan V, Fadeel B. 2010. Close encounters of the small kind: Adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Ann Rev Pharmacol Toxicol. 50:63–88.
  • Soares T, Ribeiro D, Proenca C, Chiste R, Fernandes E, Freitas M. 2016. Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci. 145:247–254.
  • Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J. 2007. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 95:300–312.
  • Vallieres F, Simard J, Noel C, Murphy-Marion M, Lavastre V, Girard D. 2016. Activation of human AML14.3D10 eosinophils by nanoparticles: Modulatory activity on apoptosis and cytokine production. J Immunotoxicol. 13:817–826.
  • Vance M, Kuiken T, Vejerano E, McGinnis S, Hochella M, Rejeski D, Hull M. 2015. Nanotechnology in the real world: Re-developing the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6:1769–1780.
  • Vandebriel RJ, Tonk ECM, de la Fonteyne-Blankestijn LJ, Gremmer ER, Verharen HW, van der Ven LT, van Loveren H, de Jong WH. 2014. Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats. Particle Fibre Toxicol. 11:21.
  • Wernersson S, Pejler G. 2014. Mast cell secretory granules: Armed for battle. Nat Rev Immunol. 14:478–494.
  • Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder A, Fazlollahi F, Girtsman TA, Kim K, Mitra S, Ntim SA, et al. 2013. Inter-laboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: NIEHS Nano GO Consortium. Environ Health Perspect. 121:683–690.
  • Yang E, Kim S, Kim J, Choi I. 2012. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 33:6858–6567.
  • Yen H, Hsu S, Tsai C. 2009. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small. 5:1553–1561.
  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. 2013. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Accounts Chem Res. 46:622–631.