4,284
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung

, , &
Pages 61-73 | Received 07 Jan 2021, Accepted 09 Mar 2021, Published online: 06 May 2021

References

  • Agustí A, Hogg J. 2019. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 381(13):1248–1256.
  • Allard B, Panariti A, Martin J. 2018. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front Immunol. 9:1777.
  • Alton E, Stern M, Farley R, Jaffe A, Chadwick S, Phillips J, Davies J, Smith S, Browning J, Davies M, et al. 1999. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: A double-blind placebo-controlled trial. Lancet. 353(9157):947–954.
  • Andon F, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso M, Allavena P. 2017. Targeting tumor-associated macrophages: The new challenge for nanomedicine. Semin Immunol. 34:103–113.
  • Bao Y, Jin Y, Chivukula P, Zhang J, Liu Y, Liu J, Clamme J, Mahato R, Ng D, Ying W, et al. 2013. Effect of PEGylation on biodistribution and gene silencing of siRNA/Lipid nanoparticle complexes. Pharm Res. 30(2):342–351.
  • Barillet S, Fattal E, Mura S, Tsapis N, Pallardy M, Hillaireau H, Kerdine-Römer S. 2019. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: Influence of surface properties on dendritic cell activation. Nanotoxicology. 13(5):606–622.
  • Barnes P, Burney P, Silverman E, Celli B, Vestbo J, Wedzicha J, Wouters E. 2015. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers. 1:15076.
  • Barnes P, Stockley R. 2005. COPD: Current therapeutic interventions and future approaches. Eur Respir J. 25(6):1084–1106.
  • Belchamber K, Donnelly L. 2017. Macrophages, origin, functions and biointervention. Results Probl. Cell Differ. 62:299–313.
  • Belliveau N, Huft J, Lin P, Chen S, Leung A, Leaver T, Wild A, Lee J, Taylor R, Tam Y, et al. 2012. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucl. Acids. 1:e37.
  • Bhardwaj A, Mehta S, Yadav S, Singh S, Grobler A, Goyal A, Mehta A. 2015. Pulmonary delivery of anti-tubercular drugs using spray-dried lipid-polymer hybrid nanoparticles. Artif. Cells Nanomed. Biotechnol. 44:1–12.
  • Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi S. 2017. Nanoparticles and innate immunity: New perspectives on host defence. Semin Immunol. 34:33–51.
  • Borghardt J, Kloft C, Sharma A. 2018. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018:1–11.
  • Braakhuis H, Park M, Gosens I, de Jong W, Cassee F. 2014. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 11:18
  • Buck J, Grossen P, Cullis P, Huwyler J, Witzigmann D. 2019. Lipid-based DNA therapeutics: Hallmarks of non-viral gene delivery. ACS Nano. 13(4):3754–3782.
  • Bus T, Traeger A, Schubert U. 2018. The great escape: How cationic polyplexes overcome the endosomal barrier. J Mater Chem B. 6(43):6904–6918.
  • Canonico A, Conary J, Meyrick B, Brigham K. 1994. Aerosol and intravenous transfection of human α1-antitrypsin gene to lungs of rabbits. Am J Respir Cell Mol Biol. 10(1):24–29.
  • Celli B, Wedzicha J. 2019. Update on clinical aspects of chronic obstructive pulmonary disease. N Engl J Med. 381(13):1257–1266.
  • Champion J, Mitragotri S. 2009. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 26(1):244–249.
  • Chan C, Majzoub R, Shirazi R, Ewert K, Chen Y, Liang K, Safinya C. 2012. Endosomal escape and transfection efficiency of PEGylated cationic liposome-DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials. 33(19):4928–4935.
  • Chen J, Guan X, Hu Y, Tian H, Chen X. 2017. Peptide-based and polypeptide-based gene delivery systems. Top Curr Chem (Cham)). 375(2):32
  • Chen S, Tam Y, Lin P, Sung M, Tam Y, Cullis P. 2016. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J Control Release. 235:236–244.
  • Cho C. 2012. Design and development of degradable polyethylenimines for delivery of DNA and small interfering RNA: An updated review. ISRN Mater. Sci. 2012:1–24.
  • Choi M, Gu J, Lee M, Rhim T. 2017. A new combination therapy for asthma using dual-function dexamethasone-conjugated polyethylenimine and Vitamin D binding protein siRNA. Gene Ther. 24(11):727–734.
  • Costa A, Sarmento B, Seabra V. 2015. Targeted drug delivery systems for lung macrophages. Curr Drug Targets. 16(14):1565–1581.
  • Costa A, Sarmento B, Seabra V. 2018. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci. 114:103–113.
  • Cullis P, Hope M. 2017. Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 25(7):1467–1475.
  • Dan N, Danino D. 2014. Structure and kinetics of lipid-nucleic acid complexes. Adv Colloid Interface Sci. 205:230–239.
  • Dasa S, Suzuki R, Mugler E, Chen L, Jansson-Lofmark R, Michaelsson E, Lindfors L, Klibanov A, French B, Kelly K. 2017. Evaluation of pharmacokinetic and pharmacodynamic profiles of liposomes for the cell type-specific delivery of small molecule drugs. Nanomedicine. 13(8):2565–2574.
  • Desch A, Gibbings S, Goyal R, Kolde R, Bednarek J, Bruno T, Slansky J, Jacobelli J, Mason R, Ito Y, et al. 2016. Flow cytometric analysis of mononuclear phagocytes in non-diseased human lung and lung-draining lymph nodes. Am J Respir Crit Care Med. 193(6):614–626.
  • Dobrovolskaia M, Shurin M, Shvedova A. 2016. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 299:78–89.
  • Doshi N, Mitragotri S. 2010. Macrophages recognize size and shape of their targets. Plos One. 5(4):e10051
  • Dowdy S. 2017. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 35(3):222–229.
  • Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla S, Shastri M, Gupta G, Satija S, Mehta M, Khurana N, et al. 2019. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res. 80(6):714–730.
  • El-Sherbiny I, El-Baz N, Yacoub M. 2015. Inhaled nano- and microparticles for drug delivery. Global Cardiol. Sci. Pract. 2015(1):2.
  • Evren E, Ringqvist E, Willinger T. 2020. Origin and ontogeny of lung macrophages: From mice to humans. Immunology. 160(2):126–138.
  • Fabre J, Collins L. 2006. Synthetic peptides as non-viral DNA Vectors. Curr Gene Ther. 6(4):459–480.
  • Fadeel B. 2019. Hide and seek: Nanomaterial interactions with the immune system. Front Immunol. 10:133
  • Fang R, Hu C, Zhang L. 2012. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin Biol Ther. 12(4):385–389.
  • Frohlich E, Salar-Behzadi S. 2014. Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 15(3):4795–4822.
  • Fujisawa T, Velichko S, Thai P, Hung L, Huang F, Wu R. 2009. Regulation of airway MUC5AC expression by IL-1β and IL-17a: The NF-κB paradigm. J Immunol. 183(10):6236–6624.
  • Galbiati V, Papale A, Kummer E, Corsini E. 2016. In vitro models to evaluate drug-induced hypersensitivity: Potential test based on Activation of Dendritic Cells. Front Pharmacol. 7:204
  • Garbi N, Lambrecht B. 2017. Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch. 469(3-4):561–572.
  • Garbuzenko O, Ivanova V, Kholodovych V, Reimer D, Reuhl K, Yurkow E, Adler D, Minko T. 2017. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine. 13(6):1983–1992.
  • Garbuzenko O, Saad M, Pozharov V, Reuhl K, Mainelis G, Minko T. 2010. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci U S A. 107(23):10737–10742.
  • Geiser M. 2010. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv. 23(4):207–217.
  • Getts D, Shea L, Miller S, King N. 2015. Harnessing nanoparticles for immune modulation. Trends Immunol. 36(7):419–427.
  • Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stoter M, et al. 2013. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 31(7):638–646.
  • Grabiec A, Hussell T. 2016. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Semin Immunopathol. 38(4):409–423.
  • Grant E, Thomas M, Fortune J, Klibanov A, Letvin N. 2012. Enhancement of plasmid DNA immunogenicity with linear polyethylenimine. Eur J Immunol. 42(11):2937–2948.
  • Green R, Brightling C, Pavord I, Wardlaw A. 2003. Management of asthma in adults: Current therapy and future directions. Postgrad Med J. 79(931):259–267.
  • Guan S, Munder A, Hedtfeld S, Braubach P, Glage S, Zhang L, Lienenklaus S, Schultze A, Hasenpusch G, Garrels W, et al. 2019. Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat Nanotechnol. 14(3):287–297.
  • Gustafson H, Holt-Casper D, Grainger D, Ghandehari H. 2015. Nanoparticle uptake: The phagocyte problem. Nano Today. 10(4):487–510.
  • Hafez I, Maurer N, Cullis P. 2001. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8(15):1188–1196.
  • Hayes A, Bakand S. 2014. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol. 10(7):933–947.
  • He Y, Liang Y, Han R, Lu W, Mak J, Zheng Y. 2019. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Control Release. 314:48–61.
  • Heukels P, Moor C, Thüsen J, Wijsenbeek M, Kool M. 2019. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 147:79–91.
  • Hirota K, Terada H. 2012. Endocytosis of particle formulations by macrophages and its application to clinical treatment. In: Ceresa B, editor. Molecular regulation of endocytosis. Rijeka: InTechOpen.
  • Hogan SP, Foster PS, Tan X, Ramsay AJ. 1998. Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. Eur J Immunol. 28(2):413–423.
  • Hoshyar N, Gray S, Han H, Bao G. 2016. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond)). 11(6):673–692.
  • Hu C, Zhang L, Aryal S, Cheung C, Fang R, Zhang L. 2011. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 108(27):10980–10985.
  • Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P, Mims A, Klisovic R, Walker AR, Chan KK, et al. 2013. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: A novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res. 19(9):2355–2367.
  • Hussell T, Bell T. 2014. Alveolar macrophages: Plasticity in a tissue-specific context. Nat Rev Immunol. 14(2):81–93.
  • Hwang T, Aljuffali I, Hung C, Chen C, Fang J. 2015. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Interact. 235:106–114.
  • Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H. 2006. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 112(1):15–25.
  • Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK, et al. 2012. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 51(34):8529–8533.
  • Jensen D, Jensen L, Koocheki S, Bengtson L, Cun D, Nielsen H, Foged C. 2012. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Control Release. 157(1):141–148.
  • Jesus M, Zuhorn I. 2015. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release. 201:1–13.
  • Jin H, Kim T, Hwang S, Chang S, Kim H, Anderson H, Lee H, Lee K, Colburn N, Yang H, et al. 2006. Aerosol delivery of urocanic acid-modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol Cancer Ther. 5(4):1041–1049.
  • Jorge A, Pais A, Vitorino C. 2019. Drug delivery systems. Meth. Mol. Biol. 2059:259–283.
  • Jubrail J, Kurian N, Niedergang F. 2017. Macrophage phagocytosis cracking the defect code in COPD. Biomed J. 40(6):305–312.
  • Kang Z, Meng Q, Liu K. 2019. Peptide-based gene delivery vectors. J Mater Chem B. 7(11):1824–1841.
  • Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. 2019. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci Rep. 9(1):8278
  • Kolahian S, Fernandez I, Eickelberg O, Hartl D. 2016. Immune mechanisms in pulmonary fibrosis. Am J Respir Cell Mol Biol. 55(3):309–322.
  • Konduru NV, Molina RM, Swami A, Damiani F, Pyrgiotakis G, Lin P, Andreozzi P, Donaghey TC, Demokritou P, Krol S, et al. 2017. Protein corona: Implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol. 14(1):42
  • Kong X, Hellermann G, Zhang W, Jena P, Kumar M, Behera A, Behera S, Lockey R, Mohapatra S. 2008. Chitosan interferon-gamma nanogene therapy for lung disease: Modulation of T-cell and dendritic cell immune responses. Allergy Asthma Clin Immunol. 4(3):95–105.
  • Kononenko V, Narat M, Drobne D. 2015. Nanoparticle interaction with the immune system. Arh Hig Rada Toksikol. 66(2):97–108.
  • Koppolu B, Zaharoff D. 2013. The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials. 34(9):2359–2369.
  • Kormann M, Hasenpusch G, Aneja M, Nica G, Flemmer A, Herber-Jonat S, Huppmann M, Mays L, Illenyi M, Scham A, et al. 2011. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 29(2):154–157.
  • Kristen A, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. 2019. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 9(1):5–23.
  • Kulkarni J, Cullis P, Meel R. 2018. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Ther. 28(3):146–157.
  • Kumar M, Kong X, Behera A, Hellermann G, Lockey R, Mohapatra S. 2003. Chitosan IFNγ-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther. 1(1):3
  • Lam J, Liang W, Chan H. 2012. Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev. 64(1):1–15.
  • Lambrecht B, Hammad H. 2012a. Lung dendritic cells in respiratory viral infection and asthma: From protection to immunopathology. Annu Rev Immunol. 30:243–270.
  • Lambrecht B, Hammad H. 2012b. The airway epithelium in asthma. Nat Med. 18(5):684–692.
  • Lambrecht B, Hammad H. 2014. Dendritic cell and epithelial cell interactions at the origin of murine asthma. Annals Ats. 11(Supplement 5):S236–S243.
  • Lambrecht B, Hammad H, Fahy J. 2019. The cytokines of asthma. Immunity. 50(4):975–991.
  • Lambrecht B, Persson E, Hammad H. 2017. Myeloid cells in asthma. Microbiol. Spectr. 5:1–17.
  • Laouini A, Andrieu V, Vecellio L, Fessi H, Charcosset C. 2014. Characterization of different Vitamin E carriers intended for pulmonary drug delivery. Intl. J. Pharm. 471(1-2):385–390.
  • Lee W, Loo C, Traini D, Young P. 2015. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv. 12(6):1009–1026.
  • Levine R, Pearce T, Adil M, Kokkoli E. 2013. Preparation and characterization of liposome-encapsulated plasmid DNA for gene delivery. Langmuir. 29(29):9208–9215.
  • Li G, Jin F, Du J, He Q, Yang B, Luo P. 2019. Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol Appl Pharmacol. 366:10–16.
  • Lin M, Lin C, Yang S, Hung C, Fang J. 2018. The interplay between nanoparticles and neutrophils. J Biomed Nanotechnol. 14(1):66–85.
  • Liu Y, Hardie J, Zhang X, Rotello V. 2017. Effects of engineered nanoparticles on the innate immune system. Semin Immunol. 34:25–32.
  • Liu C, Zhang W, Li Y, Chang J, Tian F, Zhao F, Ma Y, Sun J. 2019. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett. 19(11):7836–7844.
  • Lonez C, Vandenbranden M, Ruysschaert J. 2012. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev. 64(15):1749–1758.
  • Loughran S, McRudden C, McCarthy H. 2015. Designer peptide delivery systems for gene therapy. Eur. J. Nanomed. 7:85–96.
  • Mager I, Eiríksdottir E, Langel K, Andaloussi S, Langel U. 2010. Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochim Biophys Acta. 1798(3):338–343.
  • Mangal S, Gao W, Li T, Zhou Q. 2017. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol Sin. 38(6):782–797.
  • Mann A, Thakur G, Shukla V, Ganguli M. 2008. Peptides in DNA delivery: Current insights and future directions. Drug Discov Today. 13(3-4):152–160.
  • Mansour H, Haemosu H, Wu X. 2009. Nanomedicine in pulmonary delivery. Intl. J. Nanomed. 4:299–319.
  • Maretti E, Costantino L, Rustichelli C, Leo E, Croce M, Buttini F, Truzzi E, Iannuccelli V. 2017. Surface engineering of solid lipid nanoparticle assemblies by methyl α-D-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 528(1-2):440–451.
  • Martin M, Rice K. 2007. Peptide-guided gene delivery. AAPS J. 9(1):E18–29.
  • Mastorakos P, da Silva A, Chisholm J, Song E, Choi W, Boyle M, Morales M, Hanes J, Suk J. 2015. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci U S A. 112(28):8720–8725.
  • Mathie S, Dixon K, Walker S, Tyrrell V, Mondhe M, O'Donnell V, Gregory L, Lloyd C. 2015. Alveolar macrophages are sentinels of murine pulmonary homeostasis following inhaled antigen challenge. Allergy. 70(1):80–89.
  • Maugeri M, Nawaz M, Papadimitriou A, Angerfors A, Camponeschi A, Na M, Holtta M, Skantze P, Johansson S, Sundqvist M, et al. 2019. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun. 10(1):4333
  • McErlean E, McCrudden C, McCarthy H. 2015. Multifunctional delivery systems for cancer gene therapy. In: Hashad D, editors. Gene therapy – principles and challenges. Rijeka: InTechOpen.
  • Merkel O, Kissel T. 2012. Nonviral pulmonary delivery of siRNA. Acc Chem Res. 45(7):961–970.
  • Merkel O, Rubinstein I, Kissel T. 2014. siRNA delivery to the lung: What's new? Adv Drug Deliv Rev. 75:112–128.
  • Merkel O, Zheng M, Debus H, Kissel T. 2012. Pulmonary gene delivery using polymeric nonviral vectors. Bioconjug Chem. 23(1):3–20.
  • Moghimi S, Szebeni J. 2003. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 42(6):463–478.
  • Mohamed A, Kunda N, Ross K, Hutcheon G, Saleem I. 2019. Polymeric nanoparticles for the delivery of miRNA to treat chronic obstructive pulmonary disease (COPD). Eur J Pharm Biopharm. 136:1–8.
  • Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, Yazdi IK, Zhao P, De Rosa E, Sherman MB, et al. 2016. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater. 15(9):1037–1046.
  • Moreno-Sastre M, Pastor M, Salomon C, Esquisabel A, Pedraz J. 2015. Pulmonary drug delivery: A review on nanocarriers for antibacterial chemotherapy. J Antimicrob Chemother. 70(11):2945–2955.
  • Muhammad Q, Jang Y, Kang S, Moon J, Kim W, Park H. 2020. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci. 8(6):1490–1501.
  • Muhlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. 2008. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol. 294:L817–829.
  • Nakagome K, Okunishi K, Imamura M, Harada H, Matsumoto T, Tanaka R, Miyazaki J, Yamamoto K, Dohi M. 2009. IFNγ attenuates antigen-induced overall immune response in the airway as a Th1-type immune regulatory cytokine. J Immunol. 183(1):209–220.
  • Nanjwade B, Adichwal S, Gaikwad K, Parikh K, Manvi F. 2011. Pulmonary drug delivery: Novel pharmaceutical technologies breathe new life into the lungs. PDA J Pharm Sci Technol. 65(5):513–534.
  • Nayerossadat N, Maedeh T, Ali P. 2012. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 1:27
  • Ngan C, Asmawi A. 2018. Lipid-based pulmonary delivery system: A review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 8(5):1527–1544.
  • Omidi Y, Barar J, Heidari H, Ahmadian S, Yazdi H, Akhtar S. 2008. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial A549 cells. Toxicol Mech Methods. 18(4):369–378.
  • Pakunlu R, Wang Y, Tsao W, Pozharov V, Cook T, Minko T. 2004. Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense: Novel multicomponent delivery system. Cancer Res. 64(17):6214–6224.
  • Paranjpe M, Müller-Goymann C. 2014. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci. 15(4):5852–5873.
  • Patel S, Ashwanikumar N, Robinson E, DuRoss A, Sun C, Murphy-Benenato KE, Mihai C, Almarsson Ö, Sahay G. 2017. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17(9):5711–5718.
  • Patel B, Gupta N, Ahsan F. 2015. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 89:163–174.
  • Patel A, Kaczmarek J, Bose S, Kauffman K, Mir F, Heartlein M, de Rosa F, Langer R, Anderson D. 2019. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 31(8):e1805116
  • Pozo-Rodríguez A, Solinís M, Gascón A, Pedraz J. 2009. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm. 71(2):181–189.
  • Pozo-Rodríguez A, Solinís M, Rodríguez-Gascón A. 2016. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm. 109:184–193.
  • Qie Y, Yuan H, von Roemeling C, Chen Y, Liu X, Shih K, Knight J, Tun H, Wharen R, Jiang W, et al. 2016. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep. 6:26269
  • Regnstrom K, Ragnarsson EG, Köping-Hoggard M, Torstensson E, Nyblom H, Artursson P. 2003. PEI - a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther. 10(18):1575–1583.
  • Rehman Z, Zuhorn I, Hoekstra D. 2013. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release. 166(1):46–56.
  • Robinson E, MacDonald K, Slaughter K, McKinney M, Patel S, Sun C, Sahay G. 2018. Lipid nanoparticle-delivered chemically-modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther. 26(8):2034–2046.
  • Rodríguez Gascón A, del Pozo-Rodríguez A, Ángeles Solinís M, 2013. Non-viral delivery systems in gene therapy. In: Martin Molina F, editor. Gene therapy – tools and potential applications. Rijeka: InTechOpen.
  • Rodriguez P, Harada T, Christian D, Pantano D, Tsai R, Discher D. 2013. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 339(6122):971–975.
  • Ruge C, Kirch J, Cañadas O, Schneider M, Perez-Gil J, Schaefer U, Casals C, Lehr C. 2011. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine. 7(6):690–693.
  • Ruge C, Kirch J, Lehr C. 2013. Pulmonary drug delivery: From generating aerosols to overcoming biological barriers – therapeutic possibilities and technological challenges. Lancet Respir Med. 1(5):402–413.
  • Saad M, Garbuzenko O, Minko T. 2008. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine. 3(6):761–776.
  • Schlosser K, Taha M, Stewart D. 2018. Systematic assessment of strategies for lung-targeted delivery of microRNA mimics. Theranostics. 8(5):1213–1226.
  • Semple S, Akinc A, Chen J, Sandhu A, Mui B, Cho C, Sah D, Stebbing D, Crosley E, Yaworski E, et al. 2010. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 28(2):172–176.
  • Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, He F, Zhao J. 2015. Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anti-cancer drugs and DNA. Intl. J. Nanomed. 10:1223–1233.
  • Sharma G, Valenta D, Altman Y, Harvey S, Xie H, Mitragotri S, Smith J. 2010. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 147(3):408–412.
  • Shen C, Li J, Zhang Y, Li Y, Shen G, Zhu J, Tao J. 2017. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. Int J Nanomedicine. 12:5443–5460.
  • Sheppard N, Brinckmann S, Gartlan K, Puthia M, Svanborg C, Krashias G, Eisenbarth S, Flavell R, Sattentau Q, Wegmann F. 2014. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int Immunol. 26(10):531–538.
  • Sherman M, William L, Sobczyk M, Michaels S, Saifer M. 2012. Role of the methoxy group in immune responses to mPEG-protein conjugates. Bioconjug Chem. 23(3):485–499.
  • Shimizu T, Abu Lila A, Fujita R, Awata M, Kawanishi M, Hashimoto Y, Okuhira K, Ishima Y, Ishida T. 2018. A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes. Eur J Pharm Biopharm. 127:142–149.
  • Sosnowski T. 2015. Nanosized and nanostructured particles in pulmonary drug delivery. J Nanosci Nanotechnol. 15(5):3476–3487.
  • Stahl M, Schupp J, Jager B, Schmid M, Zissel G, Müller-Quernheim J, Prasse A. 2013. Lung collagens perpetuate pulmonary fibrosis via CD204 and M2 macrophage activation. PLoS One. 8(11):e81382
  • Strong P, Ito K, Murray J, Rapeport G. 2018. Current approaches to the discovery of novel inhaled medicines. Drug Discov Today. 23(10):1705–1717.
  • Sung J, Pulliam B, Edwards D. 2007. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25(12):563–570.
  • Szebeni J, Moghimi S. 2009. Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions. J Liposome Res. 19(2):85–90.
  • Taratula O, Kuzmov A, Shah M, Garbuzenko O, Minko T. 2013. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anti-cancer drugs and siRNA. J Control Release. 171(3):349–357.
  • Tehrani A, Hwang S, Kim T, Cho C, Hua J, Nah W, Kwon J, Kim J, Chang S, Yu K, et al. 2007. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice. Gene Ther. 14(5):451–458.
  • Thanki K, Blum K, Thakur A, Rose F, Foged C. 2018. Formulation of RNA interference-based drugs for pulmonary delivery: Challenges and opportunities. Ther Deliv. 9(10):731–749.
  • Thess A, Grund S, Mui B, Hope M, Baumhof P, Fotin-Mleczek M, Schlake T. 2015. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. 23(9):1456–1464.
  • Thorp E, Boada C, Jarbath C, Luo X. 2020. Nanoparticle platforms for antigen-specific immune tolerance. Front Immunol. 11:945.
  • Trapnell B, Whitsett J. 2002. GM-CSF Regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol. 64:775–802.
  • Vlahos R, Bozinovski S. 2014. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 5:435
  • Walkey C, Olsen J, Guo H, Emili A, Chan W. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 134(4):2139–2147.
  • Weber S, Zimmer A, Pardeike J. 2014. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm. 86(1):7–22.
  • Wibroe P, Anselmo A, Nilsson P, Sarode A, Gupta V, Urbanics R, Szebeni J, Hunter A, Mitragotri S, Mollnes T, et al. 2017. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat Nanotechnol. 12(6):589–594.
  • Wittrup A, Ai A, Liu X, Hamar P, Trifonova R, Charisse K, Manoharan M, Kirchhausen T, Lieberman J. 2015. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol. 33(8):870–876.
  • Wuyts W, Agostini C, Antoniou K, Bouros D, Chambers R, Cottin V, Egan J, Lambrecht B, Lories R, Parfrey H, et al. 2013. The pathogenesis of pulmonary fibrosis: A moving target. Eur Respir J. 41(5):1207–1218.
  • Xu C, Jere D, Jin H, Chang S, Chung Y, Shin J, Kim J, Park S, Lee Y, Chae C, et al. 2008. Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med. 178(1):60–73.
  • Yamasaki K, Eeden S. 2018. Lung macrophage phenotypes and functional responses: Role in the pathogenesis of COPD. IJMS. 19(2):582.
  • Yan Y, Liu L, Xiong H, Miller J, Zhou K, Kos P, Huffman K, Elkassih S, Norman J, Carstens R, et al. 2016. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Natl Acad Sci U S A. 113(39):E5702–5710.
  • Yanez Arteta M, Kjellman T, Bartesaghi S, Wallin S, Wu X, Kvist A, Dabkowska A, Székely N, Radulescu A, Bergenholtz J, et al. 2018. Successful re-programming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci U S A. 115(15):E3351–3360.
  • Yin H, Kanasty R, Eltoukhy A, Vegas A, Dorkin J, Anderson D. 2014. Non-viral vectors for gene-based therapy. Nat Rev Genet. 15(8):541–555.
  • Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, Hakeem A, Hu J, Gan L, Santos H, et al. 2019. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 10(1):3838.
  • Zhao Y, Huang L. 2014. Lipid nanoparticles for gene delivery. Adv Genet. 88:13–36.
  • Zhao J, Stenzel M. 2018. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polym Chem. 9(3):259–272.
  • Zhou Q, Leung S, Tang P, Parumasivam T, Loh Z, Chan H. 2015. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 85:83–99.