217
Views
1
CrossRef citations to date
0
Altmetric
Basic Research

A novel aqueous dimethyl trisulfide formulation is effective at low doses against cyanide toxicity in non-anesthetized mice and rats

ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Pages 83-94 | Received 28 Jan 2021, Accepted 23 May 2021, Published online: 05 Jul 2021

References

  • Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127.
  • Isom GE, Way JL. Effects of oxygen on the antagonism of cyanide intoxication: cytochrome oxidase, in vitro. Toxicol Appl Pharmacol. 1984;1574(1):57–62.
  • Way JL. Cyanide intoxication and its mechanism of antagonism. Annu Rev Pharmacol Toxicol. 1984;24:451–481.
  • Jones DA. Why are so many food plants cyanogenic? Phytochemistry. 1998;47(2):155–162.
  • Shragg TA, Albertson TE, Fisher CJ. Jr. Cyanide poisoning after bitter almond ingestion. West J Med. 1982;136(1):65–69.
  • Shepherd G, Velez LI. Role of hydroxocobalamin in acute cyanide poisoning. Ann Pharmacother. 2008;42(5):661–669.
  • Akyildiz BN, Kurtoglu S, Kondolot M, et al. Cyanide poisoning caused by ingestion of apricot seeds. Ann Trop Paediatr. 2010;30(1):39–43.
  • Sang AGP, Guharat S, Wananukul W. A mass cyanide poisoning from pickling bamboo shoots. Clin Toxicol. 2011;49(9):834–839.
  • Hamel J. A review of acute cyanide poisoning with a treatment update. Crit Care Nurse. 2011;31(1):72–81; quiz 82.
  • Vogel SN, Sultan TR. Ten Eyck RP. Cyanide poisoning. Clin Toxicol. 1981;18(3):367–383.
  • Bowes PC. Smoke and toxicity hazards of plastics in fire. Ann Occup Hyg. 1974;17(2):143–157.
  • Baud FJ, Barriot P, Toffis V, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med. 1991;325(25):1761–1766.
  • Geldner G, Koch EM, Gottwald-Hostalek U, et al. Report on a study of fires with smoke gas development: determination of blood cyanide levels, clinical signs and laboratory values in victims. Anaesthesist. 2013;62(8):609–616.
  • Megarbane B, Delahaye A, Goldgran-Toledano D, et al. Antidotal treatment of cyanide poisoning. J Chin Med Assoc. 2003;66(4):193–203.
  • Barillo DJ, Goode R, Esch V. Cyanide poisoning in victims of fire: analysis of 364 cases and review of the literature. J Burn Care Rehabil. 1994;15(1):46–57.
  • Hall AH, Rumack BH. Clinical toxicology of cyanide. Ann Emerg Med. 1986;15(9):1067–1074.
  • Keim ME. Terrorism involving cyanide: the prospect of improving preparedness in the prehospital setting. Prehosp Disaster Med. 2006;21(2):S56–S60.
  • Eckstein M. Cyanide as a chemical terrorism weapon. JEMS. 2004;29(8):22–31.
  • Ballantyne B. Toxicology of cyanides. In: Marrs TC, Ballantyne B, editors. Clinical and experimental toxicology of cyanides: John Wright. Bristol: IOP Publishing; 1987a. p. 41–126.
  • Ballantyne B. Post-mortem features and criteria for the diagnosis of acute lethal cyanide poisoning. In: Marrs TC, Ballantyne B, editors. Clinical and experimental toxicology of cyanides: John Wright. Bristol: IOP Publishing; 1987b. p. 217–247.
  • Ballantyne B, Bismuth C, Hall AH. Cyanides: chemical warfare agent and potential terrorist threat. In: Marrs TC, Maynard RL, Sidell FR, editors. Chemical warfare agents: toxicology and treatment. Chichester: John Wiley and Sons; 2006.
  • Borron SW, Baud FJ, Megarbane B, et al. Hydroxocobalamin for severe acute cyanide poisoning by ingestion or inhalation. Am J Emerg Med. 2007;25(5):551–558.
  • Borron SW, Stonerook M, Reid F. Efficacy of hydroxocobalamin for the treatment of acute cyanide poisoning in adult beagle dogs. Clin Toxicol. 2006;44 (Suppl 1):5–15.
  • Bebarta VS, Tanen DA, Lairet J, et al. Hydroxocobalamin and sodium thiosulfate versus sodium nitrite and sodium thiosulfate in the treatment of acute cyanide toxicity in a swine (Sus scrofa) model. Ann Emerg Med. 2010;55(4):345–351.
  • Depret F, Hoffmann C, Daoud L, et al. Association between hydroxocobalamin administration and acute kidney injury after smoke inhalation: a multicenter retrospective study. Crit Care. 2019;23(1):421.
  • Hall AH, Kulig KW, Rumack BH. Suspected cyanide poisoning in smoke inhalation: complications of sodium nitrite therapy. J Toxicol Clin Exp. 1989;9(1):3–9.
  • Rockwood GA. A bona fide need for a non-intravenous cyanide medical countermeasure. Clin Toxicol. 2019;57(4):300.
  • DeLeon SM, Downey JD, Hildenberger DM, et al. DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice. Clin Toxicol. 2018;56(5):332–341.
  • Bebarta VS, Brittain M, Chan A, et al. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med. 2017;69(6):718–725.
  • Chan A, Balasubramanian M, Blackledge W, et al. Cobinamide is superior to other treatments in a mouse model of cyanide poisoning. Clin Toxicol. 2010;48(7):709–717.
  • Chan A, Crankshaw DL, Monteil A, et al. The combination of cobinamide and sulfanegen is highly effective in mouse models of cyanide poisoning. Clin Toxicol. 2011;49(5):366–373.
  • Hendry-Hofer TB, Witeof AE, Ng PC, et al. Intramuscular sodium tetrathionate as an antidote in a clinically relevant swine model of acute cyanide toxicity. Clin Toxicol. 2020;58(1):29–35.
  • Chan A, Jiang J, Fridman A, et al. Nitrocobinamide, a new cyanide antidote that can be administered by intramuscular injection. J Med Chem. 2015;58(4):1750–1759.
  • Oser BL, Hall RL. Recent progress in the consideration of flavoring ingredients under the food additives amendment. 5. GRAS substances. Food Technology. 1972;26(5):35–42.
  • https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=DIMETHYLTRISULFIDE. Substances added to food (formerly EAFUS): Dimethyl Trisulfide. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=DIMETHYLTRISULFIDE
  • Hendry-Hofer TB, Witeof AE, Lippner DS, et al. Intramuscular dimethyl trisulfide: efficacy in a large swine model of acute severe cyanide toxicity. Clin Toxicol. 2019;57(4):265–270.
  • Bartling CM, Andre JC, Howland CA, et al. Stability characterization of a polysorbate 80-dimethyl trisulfide formulation, a cyanide antidote candidate. Drugs R D. 2016;16(1):109–127.
  • Rice NC, Rauscher NA, Wilkins WL, et al. Behavioural and physiological assessments of dimethyl trisulfide treatment for acute oral sodium cyanide poisoning. Basic Clin Pharmacol Toxicol. 2019;125(3):289–303.
  • Lee J, Rockwood G, Logue B, et al. Monitoring dose response of cyanide antidote dimethyl trisulfide in rabbits using diffuse optical spectroscopy. J Med Toxicol. 2018;14(4):295–305.
  • Rockwood GA, Thompson DE, Petrikovics I. Dimethyl trisulfide: a novel cyanide countermeasure. Toxicol Ind Health. 2016;32(12):2009–2016.
  • Kovacs K, Jayanna PK, Duke A, et al. A lipid base formulation for intramuscular administration of a novel sulfur donor for cyanide antagonism. Curr Drug Deliv. 2016;13(8):1351–1357.
  • Bhadra S, Zhang Z, Zhou W, et al. Analysis of potential cyanide antidote, dimethyl trisulfide, in whole blood by dynamic headspace gas chromatography-mass spectroscopy. J Chromatogr A. 2019;1591:71–78.
  • Feder PI, Hobson DW, Olson CT, et al. Stagewise, adaptive dose allocation for quantal response dose-response studies. Neurosci Biobehav Rev. 1991;15(1):109–114.
  • Feder PI, Olson CT, Hobson DW, et al. Stagewise, group sequential experimental designs for quantal responses. One-sample and two-sample comparisons. Neurosci Biobehav Rev. 1991;15(1):129–133.
  • Feder PI, Olson CT, Hobson DW, et al. Statistical analysis of dose-response experiments by maximum likelihood analysis and iteratively reweighted nonlinear least squares techniques. Drug Inf J. 1991;25(3):323–334.
  • Ritz C, Baty F, Streibig JC, et al. Dose-response analysis using r. PLoS One. 2015;10(12):e0146021.
  • Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016.
  • Rodger MA, King L. Drawing up and administering intramuscular injections: a review of the literature. J Adv Nurs. 2000;31(3):574–582.
  • Berger KJ, Williams MS. The fundamentals of nursing: collaborating for optimal health. 2nd ed. East Norwalk, CT: Appleton & Lange; 1992.
  • Newton M, Newton DW, Fudin J. Reviewing the “big three” injection routes. Nursing. 1992;22(2):34–41.
  • Rosdahl CB. Textbook of basic nursing. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 1995.
  • Petrikovics I, Kiss L, Chou CE, et al. Antidotal efficacies of the cyanide antidote candidate dimethyl trisulfide alone and in combination with cobinamide derivatives. Toxicol Mech Methods. 2019;29(6):438–444.
  • Kovacs K, Duke AC, Shifflet M, et al. Parenteral dosage form development and testing of dimethyl trisulfide, as an antidote candidate to combat cyanide intoxication. Pharm Dev Technol. 2017;22(8):958–963.
  • Ng PC, Hendry-Hofer TB, Witeof AE, et al. Characterization of a swine (Sus scrofa) model of oral potassium cyanide intoxication. Comp Med. 2018;68(5):375–379.
  • Ng PC, Hendry-Hofer TB, Witeof AE, et al. Efficacy of oral administration of sodium thiosulfate and glycine in a large, swine model of oral cyanide toxicity. Ann Emerg Med. 2019;74(3):423–429.
  • Iannaccone PM, Jacob HJ. Rats! Dis Model Mech. 2009;2(5–6):206–210.
  • Homberg JR, Wohr M, Alenina N. Comeback of the rat in biomedical research. ACS Chem Neurosci. 2017;8(5):900–903.
  • Hamm TE, King-Herbert A, Vasbinder MA. Chapter 27: toxicology. In: Suchow MA, Weisbroth SH, Franklin CL, editors, The laboratory rat. 2nd ed. San Diego, CA: Elsevier Academic Press; 2006; p. 803–816.
  • Bhattacharya R, Singh P, John JJ, et al. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects. Drug Chem Toxicol. 2018;42(6):577–584.
  • Bhattacharya R, Singh P, Palit M, et al. Time-dependent comparative evaluation of some important biomarkers of acute cyanide poisoning in rats: an aid in diagnosis. Biomarkers. 2014;19(3):241–251.
  • Bhattacharya R, Tulsawani R. Protective role of alpha-ketoglutarate against massive doses of cyanide in rats. J Environ Biol. 2009;30(4):515–520.
  • Sweeney LM, Sommerville DR, Channel SR. Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide. Toxicol Sci. 2014;138(1):205–216.
  • Sweeney LM, Sommerville DR, Channel SR, et al. Evaluating the validity and applicable domain of the toxic load model: impact of concentration vs. time profile on inhalation lethality of hydrogen cyanide. Regul Toxicol Pharmacol. 2015;71(3):571–584.
  • Bilska-Wilkosz A, Dudek M, Knutelska J, et al. The effect of lipoic acid administration on the urinary excretion of thiocyanate in rats exposed to potassium cyanide. Acta Pol Pharm. 2015;72(1):49–52.
  • Ola-Mudathir KF, Maduagwu EN. Antioxidant effects of methanol extract of Allium cepa linn on cyanide-induced renal toxicity in male wistar rats. Niger J Physiol Sci. 2014;29(2):147–151.
  • Ogundele OM, Adeniyi PA, Ajonijebu DC, et al. Motor and memory function in rat models of cyanide toxicity and vascular occlusion induced ischemic injury. Pathophysiology. 2014;21(3):191–198.
  • de Sousa AB, Gorniak SL. Toxicokinetic aspects of thiocyanate after oral exposure to cyanide in female Wistar rats in different physiological states. Drug Chem Toxicol. 2014;37(1):63–68.
  • Hansen MB, Olsen NV, Hyldegaard O. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats. J Appl Physiol (1985). 2013;115(9):1254–1261.
  • Petrikovics I, Thompson DE, Rockwood GA, et al. Organ-distribution of the metabolite 2-aminothiazoline-4-carboxylic acid in a rat model following cyanide exposure. Biomarkers. 2011;16(8):686–690.
  • Bhattacharya R. Therapeutic efficacy of sodium nitrite and 4-dimethylaminophenol or hydroxylamine co-administration against cyanide poisoning in rats. Hum Exp Toxicol. 1995;14(1):29–33.
  • Cambal LK, Weitz AC, Li HH, et al. Comparison of the relative propensities of isoamyl nitrite and sodium nitrite to ameliorate acute cyanide poisoning in mice and a novel antidotal effect arising from anesthetics. Chem Res Toxicol. 2013;26(5):828–836.
  • Jiang S, Liu Z, Zhuang X. Effect of procaine hydrochloride on cyanide intoxication and its effect on neuronal calcium in mice. Toxicol Appl Pharmacol. 1998;150(1):32–36.
  • Anseeuw K, Delvau N, Burillo-Putze G, et al. Cyanide poisoning by fire smoke inhalation: a European expert consensus. Eur J Emerg Med. 2013;20(1):2–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.