192
Views
1
CrossRef citations to date
0
Altmetric
Review

Green biodiesel based on non-vegetable oil and catalytic ability of waste materials as heterogeneous catalyst

ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 7432-7452 | Received 23 Mar 2022, Accepted 05 Aug 2022, Published online: 18 Aug 2022

References

  • Abduh, M. Y., R. Manurung, A. Faustina, E. Affanda, I. R. H. Siregar, and C. Muhammad. 2017. Bioconversion of Pandanus tectorius using black soldier fly larvae for the production of edible oil and protein-rich biomass. Journal of Entomology and Zoology Studies 5:803–09.
  • Abou-Shanab, R. A. I., S. H. Kim, M. K. Ji, S. H. Lee, H. S. Roh, and B. H. Jeon. 2013, 5. Municipal wastewater utilization for biomass and biodiesel production by Scenedesmus obliquus HM103382 and Micractinium reisseri JN169781. Journal of Renewable and Sustainable Energy 5 (5): 052006. doi:10.1063/1.4821504.
  • Aburas, H., A. Bafail, and A. Demirbas. 2015. The pyrolizing of waste lubricating oil (WLO) into diesel fuel over a supported calcium oxide additive. Petroleum Science and Technology 33 (2):226–36. doi:10.1080/10916466.2014.973604.
  • Alagumalai, A., O. Mahian, F. Hollmann, and W. Zhang. 2021. Environmentally benign solid catalysts for sustainable biodiesel production: A critical review. Science of the Total Environment 768:144856. doi:10.1016/j.scitotenv.2020.144856.
  • Alptekin, E., and M. Canakci. 2010. Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel 89 (12):4035–39. doi:10.1016/j.fuel.2010.04.031.
  • Alptekin, E., M. Canakci, and H. Sanli. 2012. Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel 95:214–20. doi:10.1016/j.fuel.2011.08.055.
  • Alptekin, E., M. Canakci, and H. Sanli. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34 (11):2146–54. doi:10.1016/j.wasman.2014.07.019.
  • Altun, Ş., and F. Yaşar. 2013. Biodiesel production from leather industry wastes as an alternative feedstock and its use in diesel engines. Energy Exploration & Exploitation 31 (5):759–70. doi:10.1260/0144-5987.31.5.759.
  • Ananthi, V., R. Raja, I. S. Carvalho, K. Brindhadevi, A. Pugazhendhi, and A. Arun. 2021. A realistic scenario on microalgae based biodiesel production: Third generation biofuel. Fuel 284:118965. doi:10.1016/j.fuel.2020.118965.
  • Andersen, O., and J. E. Weinbach. 2010. Residual animal fat and fish for biodiesel production. Potentials in Norway. Biomass and Bioenergy 34 (8):1183–88. doi:10.1016/j.biombioe.2010.03.010.
  • Archana, T., and K. Thomas. 2018. Biofuels from microalgae. In Advanced Biofuels bioenergy. In N.-R. Madhugiri and J. R. Soneji.(eds.). pp. 239–49. IntechOpen. doi:10.5772/intechopen.73012.
  • Banković-Ilić, I. B., O. S. Stamenković, and V. B. Veljković. 2012. Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews 16 (6):3621–47. doi:10.1016/j.rser.2012.03.002.
  • Banković-Ilić, I. B., I. J. Stojković, O. S. Stamenković, V. B. Veljkovic, and Y. T. Hung. 2014. Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews 32:238–54. doi:10.1016/J.RSER.2014.01.038.
  • Bowling, J. J., J. B. Anderson, K. L. Armbrust, and M. T. Hamann. 2014. Evaluation of potential biodiesel feedstock production from oleaginous insect Solenopsis sp. Fuel 117:5–7. doi:10.1016/j.fuel.2013.08.058.
  • Budžaki, S., G. Miljić, S. Sundaram, M. Tišma, and V. Hessel. 2018. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Applied Energy 210:268–78. doi:10.1016/j.apenergy.2017.11.026.
  • Bušić, A., N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M. I. Šantek, D. Komes, S. Novak, B. Šantek 2018. Bioethanol Production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology 56 (3):289. doi:10.17113/FTB.56.03.18.5546.
  • Çakırca, E. E., G. N. Tekin, O. İlgen, and A. N. Akın. 2018. Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol Energy and Environment. 30(1):176–87. 10.1177/0958305X18787317.
  • Canakci, M., and H. Sanli. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology 35 (5):431–41. doi:10.1007/S10295-008-0337-6.
  • Canoira, L., M. Rodríguez-Gamero, E. Querol, R. Alcántara, M. Lapuerta, and F. Oliva. 2008. Biodiesel from low-grade animal fat: Production process assessment and biodiesel properties characterization. Industrial & Engineering Chemistry Research 47 (21):7997–8004. doi:10.1021/ie8002045.
  • Changmai, B., R. Rano, C. Vanlalveni, and L. Rokhum. 2021. A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production. Fuel 286:119447. doi:10.1016/j.fuel.2020.119447.
  • Chauhan, S. K., and A. Shukla. 2011. environmental impacts of production of biodiesel and its use in transportation sector. In M. A. D. S. Bernardes(ed.).Environment Impact biofuels. (pp. 13). InTech. ISBN:978-953-307-479-5.
  • Chen, L., D. Debnath, J. Zhong, K. Ferin, A. VanLoocke, and M. Khanna. 2021. The economic and environmental costs and benefits of the renewable fuel standard. Environmental Research Letters 16 (3):034021. doi:10.1088/1748-9326/ABD7AF.
  • Chhetri, A. B., M. S. Tango, S. M. Budge, K. C. Watts, and M. R. Islam. 2008. Non-edible plant oils as new sources for biodiesel production. International Journal of Molecular Sciences 9 (2):169–80. doi:10.3390/ijms9020169.
  • Chouhan, A. P. S., and A. K. Sarma. 2011. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15 (9):4378–99. doi:10.1016/j.rser.2011.07.112.
  • Christopher, L. P., H. Kumar, and V. P. Zambare. 2014. Enzymatic biodiesel: Challenges and opportunities. Applied Energy 119:497–520. doi:10.1016/j.apenergy.2014.01.017.
  • Clenci, A., R. Niculescu, A. Danlos, V. Iorga-Simăn, and A. Trică. 2016. Impact of biodiesel blends and Di-Ethyl-Ether on the cold starting performance of a compression ignition engine. Energies 9 (4):284. doi:10.3390/en9040284.
  • Culaba, A. B., A. T. Ubando, P. M. L. Ching, W. H. Chen, and J. S. Chang. 2020. Biofuel from microalgae: Sustainable pathways. Sustainability 12 (19):1–19. doi:10.3390/su12198009.
  • Cunha, A., V. Feddern, D. Prá MC, M. M. Higarashi, P. G. De Abreu, and A. Coldebella. 2013. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105:228–34. doi:10.1016/j.fuel.2012.06.020.
  • Dagne, H., R. Karthikeyan, and S. Feleke. 2019. Waste to energy: Response surface methodology for optimization of biodiesel production from leather fleshing waste. Journal of Energy 2019:1–19. doi:10.1155/2019/7329269.
  • Das, V., A. M. Tripathi, M. J. Borah, N. T. Dunford, and D. Deka. 2020. Cobalt-doped CaO catalyst synthesized and applied for algal biodiesel production. Renewable Energy 161:1110–19. doi:10.1016/j.renene.2020.07.040.
  • Demirbas, A., H. Alidrisi, and M. A. Balubaid. 2015. API gravity, sulfur content, and desulfurization of crude oil. Petroleum Science and Technology 33 (1):93–101. doi:10.1080/10916466.2014.950383.
  • Demirbas, A., A. Bafail, W. Ahmad, and M. Sheikh. 2016. Biodiesel production from non-edible plant oils. Energy Exploration & Exploitation 34 (2):290–318. doi:10.1177/0144598716630166.
  • Department of Environment, USA. Biofuels & Greenhouse Gas Emissions: Myths versus Facts. n.d. Accessed 21 January 2022. https://www.energy.gov/sites/prod/files/edg/media/BiofuelsMythVFact.pdf
  • Dev, A., A. K. Srivastava, and S. Karmakar. 2018. Chapter 12 - New generation hybrid nanobiocatalysts: The catalysis redefined. Handbook of Nanomaterials for Industrial Applications. Elsevier.(pp.217–31). doi:10.1016/B978-0-12-813351-4.00013-4.
  • Dias, J. M., M. C. M. Alvim-Ferraz, and M. F. Almeida. 2008. Mixtures of vegetable oils and animal fat for biodiesel production: Influence on product composition and quality. Energy and Fuels 22 (6):3889–93. doi:10.1021/ef8005383.
  • Dias, J. M., M. C. M. Alvim-Ferraz, and M. F. Almeida. 2009. Production of biodiesel from acid waste lard. Bioresource Technology 100 (24):6355–61. doi:10.1016/j.biortech.2009.07.025.
  • Duan, X., and S. Wang. 2017. Heterogeneousysis for Environmental Remediation. Catalysts 7 (8):236. doi:10.3390/CATAL7080236.
  • Ejeromedoghene, O. 2021. Acid-catalyzed transesterification of Palm Kernel Oil (PKO) to biodiesel. Materials Today: Proceedings 47:1580–83. doi:10.1016/j.matpr.2021.04.042.
  • Encinar, J. M., N. Sánchez, G. Martínez, and L. García. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 (23):10907–14. doi:10.1016/j.biortech.2011.09.068.
  • Esmaeili, H., and R. Foroutan. 2018. Optimization of biodiesel production from goat tallow using alkaline catalysts and combining them with diesel. Chemistry & Chemical Technology 12 (1):120–26. doi:10.23939/chcht12.01.120.
  • ETIP Bioenergy. Waste oils and fats as feedstocks for biofuels production. Eur Technol Innov Platf 2021. https://www.etipbioenergy.eu/value-chains/feedstocks/waste/waste-oils-and-fats (accessed August 30, 2021).
  • Faruque, M. O., S. A. Razzak, and M. M. Hossain. 2020. Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts 10 (9):1–25. doi:10.3390/catal10091025.
  • Felizardo, P., J. MacHado, D. Vergueiro, M. J. N. Correia, J. P. Gomes, and J. M. Bordado. 2011. Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock. Fuel Processing Technology 92 (6):1225–29. doi:10.1016/j.fuproc.2011.01.020.
  • Ferreira, R. S. B., P. R. M. dos, K. A. Sampaio, and E. A. C. Batista. 2019. Heterogeneous catalysts for biodiesel production: A review. Food and Public Health 9:125–37. doi:10.5923/j.fph.20190904.04.
  • Foroutan, R., R. Mohammadi, and B. Ramavandi. 2021. Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment. Fuel 291:120151. doi:10.1016/j.fuel.2021.120151.
  • French, R., and S. Czernik. 2010. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology 91 (1):25–32. doi:10.1016/j.fuproc.2009.08.011.
  • Gao, C., Y. Zhai, Y. Ding, and Q. Wu. 2010. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy 87 (3):756–61. doi:10.1016/j.apenergy.2009.09.006.
  • Gebremariam, S. N., and J. M. Marchetti. 2017. Biodiesel production technologies. Review 5. doi:10.3934/energy.2017.3.425.
  • Getahun, E., and N. Gabiyye. 2013. Experimental investigation and characterization of biodiesel production from leather industry fleshing wastes. International Journal of Renewable and Sustainable Energy 2 (3):120. doi:10.11648/j.ijrse.20130203.17.
  • Han, Y., F. Stankovikj, and M. Garcia-Perez. 2017. Co-hydrotreatment of tire pyrolysis oil and vegetable oil for the production of transportation fuels. Fuel Processing Technology 159:328–39. doi:10.1016/j.fuproc.2017.01.048.
  • Hanaki, K., and J. Portugal-Pereira. 2018. The effect of biofuel production on greenhouse gas emission reductions . Biofuels and Sustainability. Science for Sustainable Societies. (pp.53–71). doi: 10.1007/978-4-431-54895-9_6.
  • Heilmann, S. M., L. R. Jader, L. A. Harned, M. J. Sadowsky, F. J. Schendel, P. A. Lefebvre, M. G. von Keitz, K. J. Valentas 2011. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Applied Energy 88 (10):3286–90. doi:10.1016/j.apenergy.2010.12.041.
  • Hita, I., A. Gutiérrez, M. Olazar, J. Bilbao, J. M. Arandes, and P. Castaño. 2015. Upgrading model compounds and scrap tires Pyrolysis Oil (STPO) on hydrotreating NiMo catalysts with tailored supports. Fuel 145:158–69. doi:10.1016/j.fuel.2014.12.055.
  • Hoang, A. T., T. H. Nguyen, and H. P. Nguyen. 2020. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 00:1–18. doi:10.1080/15567036.2020.1745336.
  • Hossain, N., T. M. I. Mahlia, and R. Saidur. 2019. Latest development in microalgae-biofuel production with nano-additives. Biotechnology for Biofuels 12 (1):1–16. doi:10.1186/s13068-019-1465-0.
  • Hossain, F. M., M. N. Nabi, T. J. Rainey, T. Bodisco, T. Bayley, D. Randall, Ristovski, Z, Brown, R. J. 2020. Novel biofuels derived from waste tyres and their effects on reducing oxides of nitrogen and particulate matter emissions. Journal of Cleaner Production 242:118463. doi:10.1016/j.jclepro.2019.118463.
  • Huang, H., M. Khanna, H. Önal, and X. Chen. 2013. Stacking low carbon policies on the renewable fuels standard: Economic and greenhouse gas implications. Energy Policy 56:5–15. doi:10.1016/J.ENPOL.2012.06.002.
  • Hussein, M. F., A. El Naga AO, M. El Saied, M. M. AbuBaker, S. A. Shaban, and F. Y. El Kady. 2021. Potato peel waste-derived carbon-based solid acid for the esterification of oleic acid to biodiesel. Environmental Technology & Innovation 21:101355. doi:10.1016/j.eti.2021.101355.
  • Işler, A., S. Sundu, M. Tüter, and F. Karaosmanoĝlu. 2010. Transesterification reaction of the fat originated from solid waste of the leather industry. Waste Management 30 (12):2631–35. doi:10.1016/j.wasman.2010.06.005.
  • Jahirul, M. I., F. M. Hossain, M. G. Rasul, and A. A. Chowdhury. 2021. A review on the thermochemical recycling of waste tyres to oil for automobile engine application. Energies 14 (13):1–18. doi:10.3390/en14133837.
  • Jeswani, H. K., A. Chilvers, and A. Azapagic. 2020. Environmental sustainability of biofuels: A review. Proceedings of the Royal Society A 476. doi:10.1098/RSPA.2020.0351.
  • K, M., and V. Ams. 2020. Biodiesel production from waste chicken oil using nanoeggshell heterogeneous catalyst with isopropyl ether as cosolvent. Environ Qual Manag. doi:10.1002/TQEM.21718.
  • Khan, A. M., A. H. Safi, M. N. Ahmed, A. R. Siddiqui, M. A. Usmani, S.-H. Khan, K. Yasmeen, . 2020. Biodiesel synthesis from waste cooking oil using a variety of waste marble as heterogeneous catalysts. Brazilian Journal of Chemical Engineering 36 (4):1487–500. doi:10.1590/0104-6632.20190364S20190021.
  • Kiran, B., R. Kumar, and D. Deshmukh. 2014. Perspectives of microalgal biofuels as a renewable source of energy. Energy Conversion and Management 88:1228–44. doi:10.1016/j.enconman.2014.06.022.
  • Kolomaznik, K., J. Pecha, M. Barinova, and L. Sanek. 2010. Economic aspects of biodiesel production from tannery waste fats. Journal of the American Leather Chemists Association 105:327–33.
  • Lei, T., Z. Wang, X. Chang, L. Lin, X. Yan, Y. Sun, X. Shi, X. He, J. Zhu 2016. Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate-biodiesel-diesel blends. Energy 95:29–40. doi:10.1016/j.energy.2015.11.059.
  • Leung, D., D. Yang, Z. Li, Z. Zhao, J. Chen, and L. Zhu. 2012. Biodiesel from Zophobas morio larva oil: Process optimization and FAME characterization. Industrial & Engineering Chemistry Research 51 (2):1036–40. doi:10.1021/ie201403r.
  • Li, Q., L. Zheng, H. Cai, E. Garza, Z. Yu, and S. Zhou. 2011a. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90 (4):1545–48. doi:10.1016/j.fuel.2010.11.016.
  • Li, Q., L. Zheng, N. Qiu, H. Cai, J. K. Tomberlin, and Z. Yu. 2011b. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Management 31 (6):1316–20. doi:10.1016/j.wasman.2011.01.005.
  • Liu, Y., H. Liu, S. Liu, S. Wang, R. J. Jiang, and S. Li. 2009. Hormonal and nutritional regulation of insect fat body development and function. Archives of Insect Biochemistry and Physiology 71 (1):16–30. doi:10.1002/arch.20290.
  • Liu, J., W. Qiu, and Y. Wang. 2017. Fungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock. Bioresources and Bioprocessing 4 (1):4. doi:10.1186/s40643-016-0136-2.
  • Manzano-Agugliaro, F., M. J. Sanchez-Muros, F. G. Barroso, A. Martínez-Sánchez, S. Rojo, and C. Pérez-Bañón. 2012. Insects for biodiesel production. Renewable and Sustainable Energy Reviews 16 (6):3744–53. doi:10.1016/j.rser.2012.03.017.
  • Mariod, A. A. 2013. Insect oil and protein: Biochemistry, food and other uses: Review. Agricultural Science 04:76–80. doi:10.4236/as.2013.49b013.
  • Maroa, S., and F. Inambao. 2021. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Engineering in Life Sciences 21 (12):790–824. doi:10.1002/ELSC.202100025.
  • Mata, T. M., N. Cardoso, M. Ornelas, S. Neves, and N. S. Caetano. 2011. Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy and Fuels 25 (10):4756–62. doi:10.1021/ef2010207.
  • Mizik, T., and G. Gyarmati. 2021. clean technologies economic and sustainability of biodiesel production — A systematic literature review. Econ Sustain Biodiesel Prod Syst Lit Rev 3:19–36.
  • Molina-Gutiérrez, M., L. Alcaraz, F. A. López, L. Rodríguez-Sánchez, M. J. Martínez, and A. Prieto. 2021. Immobilized forms of the ophiostoma piceae lipase for green synthesis of biodiesel. Comparison with eversa transform 2.0 and Cal A. Journal of Fungi 7 (10):822. doi:10.3390/jof7100822.
  • Mondal, M., S. Goswami, A. Ghosh, G. Oinam, O. N. Tiwari, P. Das, Gayen, K., Mandal , M. K., Halder, G. N., et al. 2017. Production of biodiesel from microalgae through biological carbon capture: A review. Biotech 3 (7):1–21. doi:10.1007/s13205-017-0727-4.
  • Moschini, G. C, Cui, J., Lapan, H. 2012. Economics of Biofuels: An Overview of Policies, Impacts and Prospects. Bio-based and Applied Economics 1(3):269–296 .
  • Nasir, N. F., W. R. W. Daud, S. K. Kamarudin, and Z. Yaakob. 2014. Methyl esters selectivity of transesterification reaction with homogenous alkaline catalyst to produce biodiesel in batch, plug flow, and continuous stirred tank reactors. International Journal of Chemical Engineering 2014:1–13. doi:10.1155/2014/931264.
  • Ndiaye, M., A. Arhaliass, J. Legrand, G. Roelens, and A. Kerihuel. 2020. Reuse of waste animal fat in biodiesel: Biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renewable Energy 145:1073–79. doi:10.1016/j.renene.2019.06.030.
  • Okoro, E. E., S. Iwuajoku, and S. E. Sanni. 2020. Performance evaluation of biodiesel produced from waste tire pyrolytic oil as a lubricant additive in oil drilling systems. Recycling 5 (4):1–16. doi:10.3390/recycling5040029.
  • Orege, J. I., O. Oderinde, G. A. Kifle, A. A. Ibikunle, S. A. Raheem, O. Ejeromedoghene, Okeke, E. S., Olukowi, O. M., Orege, O. B., Fagbohun , E. O., Ogundipe, T. O., Avor, E. P., Ajayi, O. O., Daramola, M. O., et al. 2022. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Elsevier Ltd 258. doi:10.1016/j.enconman.2022.115406.
  • Orsavova, J., L. Misurcova, J. Vavra Ambrozova, R. Vicha, and J. Mlcek. 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences 16 (12):12871–90. doi:10.3390/ijms160612871.
  • Parawira, W. 2010. Biodiesel production from Jatropha curcas: A review. Sci Res Essays 5:1796–808. doi:10.3109/07388551.2010.487185.
  • Pasha, M. K., L. Dai, D. Liu, M. Guo, and W. Du. 2021. An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnology for Biofuels 14 (1):1–23. doi:10.1186/S13068-021-01977-Z/FIGURES/5.
  • Pecha, J., K. Kolomaznik, M. Barinova, and L. Sanek. 2012. High quality biodiesel and glycerin from fleshings. Journal of the American Leather Chemists Association 107:312–22.
  • Pessoa Junior, W. A. G., M. L. Takeno, F. X. Nobre, B. S. de S, I. S. C. Sá, E. P. Silva, L. Manzato, S. Iglauer, F. A. de Freitas 2020. Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization. Energy 213:118824. doi:10.1016/j.energy.2020.118824.
  • Rabie, A. M., M. Shaban, M. R. Abukhadra, R. Hosny, S. A. Ahmed, and N. A. Negm. 2019. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids 279:224–31. doi:10.1016/j.molliq.2019.01.096.
  • Raheem, A., P. Prinsen, A. K. Vuppaladadiyam, M. Zhao, and R. Luque. 2018. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production 181:42–59. doi:10.1016/J.JCLEPRO.2018.01.125.
  • Rajkumari, K., D. Das, G. Pathak, and S. L. Rokhum. 2019. Waste-to-useful: A biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New Journal of Chemistry 43 (5):2134–40. doi:10.1039/C8NJ05029E.
  • Ranganathan, P., A. K. Pandey, R. Sirohi, A. Tuan Hoang, and S. H. Kim. 2022. Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. Bioresource Technology 350:126920. doi:10.1016/j.biortech.2022.126920.
  • Rizwanul Fattah, I. M., H. C. Ong, T. M. I. Mahlia, M. Mofijur, A. S. Silitonga, S. M. Ashrafur Rahman, A. Ahmad 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research 8:101. doi:10.3389/FENRG.2020.00101/BIBTEX.
  • Safieddin Ardebili, M., B. Ghobadian, G. Najafi, and A. Chegeni. 2011. Biodiesel production potential from edible oil seeds in Iran. Renewable and Sustainable Energy Reviews 15 (6):3041–44. doi:10.1016/j.rser.2011.03.004.
  • Saharan, B. S., D. Sharma, R. Sahu, and O. Sahin. 2013. Towards algal biofuel production : A concept of green bio energy development. Innov Rom Food Biotechnol 12:1–21.
  • Saiteja, P., and B. Ashok. 2021. A critical insight review on homogeneous charge compression ignition engine characteristics powered by biofuels. Fuel 285:119202. doi:10.1016/j.fuel.2020.119202.
  • Šánek, L., J. Pecha, K. Kolomazník, and M. Bařinová. 2015. Biodiesel production from tannery fleshings: Feedstock pretreatment and process modeling. Fuel 148:16–24. doi:10.1016/j.fuel.2015.01.084.
  • Šánek, L., J. Pecha, K. Kolomazník, and M. Bařinová. 2016. Pilot-scale production of biodiesel from waste fats and oils using tetramethylammonium hydroxide. Waste Management 48:630–37. doi:10.1016/j.wasman.2015.10.005.
  • Sani, Y. M., D. Wmaw, and A. R. A. Aziz. 2012. Biodiesel feedstock and production technologies: Successes, challenges and prospects. Biodiesel - Feed Production Application. doi:10.5772/52790.
  • Sawangkeaw, R., and S. Ngamprasertsith. 2013. A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews 25:97–108. doi:10.1016/j.rser.2013.04.007.
  • Semwal, S., A. K. Arora, R. P. Badoni, and D. K. Tuli. 2011. Biodiesel production using heterogeneous catalysts. Bioresource Technology 102 (3):2151–61. doi:10.1016/j.biortech.2010.10.080.
  • Shi, W., J. Li, B. He, F. Yan, Z. Cui, K. Wu, L. Lin, X. Qian, Y. Cheng 2013. Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresource Technology 139:316–22. doi:10.1016/j.biortech.2013.04.040.
  • Singh, S. P., and D. Singh. 2010. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews 14 (1):200–16. doi:10.1016/j.rser.2009.07.017.
  • Toldra-Reig, F., L. Mora, and F. Toldra. 2020. applied sciences trends in biodiesel production from animal fat waste. Applied Sciences 10:1–17.
  • Toldrá-Reig, F., L. Mora, and F. Toldrá. 2020. Trends in biodiesel production from animal fat waste. Applied Sciences 10 (10):3644. doi:10.3390/APP10103644.
  • Tong, D., C. Hu, K. Jiang, and Y. Li. 2011. Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. Journal of the American Oil Chemists’ Society 88 (3):415–23. doi:10.1007/s11746-010-1672-0.
  • Trisupakitti, S., C. Ketwong, W. Senajuk, C. Phukapak, and S. Wiriyaumpaiwong. 2018. GOLDEN APPLE CHERRY SNAIL SHELL AS CATALYST FOR HETEROGENEOUS TRANSESTERIFICATION OF BIODIESEL. Brazilian Journal of Chemical Engineering 35 (4):1283–91. doi:10.1590/0104-6632.20180354s20170537.
  • Uyumaz, A., B. Aydoğan, H. Solmaz, E. Yılmaz, D. Yeşim Hopa, T. Aksoy Bahtli, Ö. Solmaz, F. Aksoy 2019. Production of waste tyre oil and experimental investigation on combustion, engine performance and exhaust emissions. Journal of the Energy Institute 92 (5):1406–18. doi:10.1016/j.joei.2018.09.001.
  • Verma, P., A. Zare, M. Jafari, T. A. Bodisco, T. Rainey, Z. D. Ristovski, R. J. Brown 2018. Diesel engine performance and emissions with fuels derived from waste tyres. Scientific Reports 8 (1):1–13. doi:10.1038/s41598-018-19330-0.
  • Vignesh, R., and B. Ashok. 2020. Critical interpretative review on current outlook and prospects of selective catalytic reduction system for De-NOx strategy in compression ignition engine. Fuel 276:117996. doi:10.1016/j.fuel.2020.117996.
  • Wang, H., K. U. Rehman, X. Liu, Q. Yang, L. Zheng, W. Li, Cai, M., Li, Q., Zhang, J., Yu, Z., et al. 2017. Insect biorefinery: A green approach for conversion of crop residues into biodiesel and protein. Biotechnology for Biofuels 10:1–13. doi:10.1186/s13068-017-0986-7.
  • Womeni, H. M., M. Linder, B. Tiencheu, F. T. Mbiapo, P. Villeneuve, J. Fanni, Parmentier, M., et al. 2009. Oils of insects and larvae consumed in Africa: Potential sources of polyunsaturated fatty acids. Journal of Oleo Science 1:230–35.
  • Wong, C. Y., J. W. Lim, Y. Uemura, F. K. Chong, Y. F. Yeong, M. Mohamad, Hermansyah, H., et al. 2016. Insect-based lipid for biodiesel production. AIP Conference Proceedings 1–5. doi:10.1063/1.5055552.
  • Wong, C. Y., S. S. Rosli, Y. Uemura, Y. C. Ho, A. Leejeerajumnean, W. Kiatkittipong, Cheng , C. K., Lam, M. K., Lim, J. W., et al. 2019. Potential protein and biodiesel sources from black soldier fly larvae: Insights of larval harvesting instar and fermented feeding medium. Energies 12. doi:10.3390/en12081570.
  • Wongkhorsub, C., and N. Chindaprasert. 2013. A comparison of the use of pyrolysis oils in diesel engine. Energy and Power Engineering 5 (4):350–55. doi:10.4236/epe.2013.54b068.
  • Xiong, W., X. Li, J. Xiang, and Q. Wu. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology 78 (1):29–36. doi:10.1007/s00253-007-1285-1.
  • Yang, M., N. R. Baral, B. A. Simmons, J. C. Mortimer, P. M. Shih, and C. D. Scown. 2020. Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America 117 (15):8639–48. doi:10.1073/PNAS.2000053117/-/DCSUPPLEMENTAL.
  • Yang, S., Q. Li, Y. Gao, L. Zheng, and Z. Liu. 2014. Biodiesel production from swine manure via housefly larvae (Musca domestica L.). Renewable Energy 66:222–27. doi:10.1016/j.renene.2013.11.076.
  • Yang, S., Q. Li, Q. Zeng, J. Zhang, Z. Yu, and Z. Liu. 2012. Conversion of solid organic wastes into oil via boettcherisca peregrine (Diptera: Sarcophagidae) larvae and optimization of parameters for biodiesel production. PLoS One 7:1–7. doi:10.1371/journal.pone.0045940.
  • Yang, S., and Z. Liu. 2014. Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production. Applied Energy 113:385–91. doi:10.1016/j.apenergy.2013.07.056.
  • Yusuff, A. S., and J. O. Owolabi. 2019. Synthesis and characterization of alumina supported coconut chaff catalyst for biodiesel production from waste frying oil. South African Journal of Chemical Engineering 30:42–49. doi:10.1016/j.sajce.2019.09.001.
  • Zheng, L., Y. Hou, W. Li, S. Yang, Q. Li, and Z. Yu. 2013. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Applied Energy 101:618–21. doi:10.1016/j.apenergy.2012.06.067.
  • Zheng, L., Q. Li, J. Zhang, and Z. Yu. 2012. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy 41:75–79. doi:10.1016/j.renene.2011.10.004.
  • Zolfagharinia, S., N. Koukabi, and E. Kolvari. 2016. A unique opportunity for the utilization of glass wastes as a resource for catalytic applications: Toward a cleaner environment. RSC Advances 6 (115):113844–58. doi:10.1039/C6RA22791K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.