211
Views
0
CrossRef citations to date
0
Altmetric
Review

Gold nanoparticles as radiosensitizer for radiotherapy and diagnosis of COVID-19: A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 161-187 | Received 05 Jul 2022, Accepted 16 Oct 2022, Published online: 05 Nov 2022

References

  • World Health Organization, Cancer, 2020 (2018).
  • World Health Organization, Estimated number of new cases from 2020 to 2040, (2021).
  • D. P. Nussbaum, et al., “blazer 3rd, preoperative or postoperative radiotherapy versus surgery alone for retroperitoneal sarcoma: a case-control, propensity score-matched analysis of a nationwide clinical oncology database,” Lancet Oncol, vol. 17, no. 7, pp.966–975, 2016. DOI: 10.1016/S1470-2045(16)30050-X.
  • B. Glimelius, “On a prolonged interval between rectal cancer (chemo) radiotherapy and surgery,” Ups J Med Sci, vol. 122, no. 1, pp.1–10, 2017. DOI: 10.1080/03009734.2016.1274806.
  • H. S. Wasan, et al., “First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials,” Lancet Oncol, vol. 18, no. 9, pp.1159–1171, 2017. DOI: 10.1016/S1470-2045(17)30457-6.
  • M. H. Yashavarddhan, S. K. Shukla, A. K. Sharma, and M. Suar, “Suar, response of normal cells following multiple radiation exposure under radiotherapy setting,” Def Life Sci J, vol. 2, no. 3, pp.335–342, 2017. DOI: 10.14429/dlsj.2.11667.
  • W. C. Roentgen, “On a new kind of rays,” Nature, vol. 53, pp. 274–276, 1896. DOI:10.1038/053274b0.
  • P. P. Dendy and B. Heaton. Physics for Diagnostic Radiology. Boca Raton: CRC press, 2011.
  • K. Haume, et al., “Gold nanoparticles for cancer radiotherapy: a review,” Cancer Nanotechnol, vol. 7, no. 1, pp. 8, 2016. DOI: 10.1186/s12645-016-0021-x.
  • R. Baskar, J. Dai, N. Wenlong, R. Yeo, and K. W. Yeoh, “Biological response of cancer cells to radiation treatment,” Front Mol Biosci, vol. 1, pp. 24, 2014. DOI:10.3389/fmolb.2014.00024.
  • W. F. Morgan, “Non-targeted and delayed effects of exposure to ionizing radiation: i. radiation-induced genomic instability and bystander effects in vitro,” radiation Research, vol. 159, no. 5, pp.567–580, 2003. DOI: 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2.
  • S. Wolff, “The adaptive response in radiobiology: evolving insights and implications,” Environ Health Perspect, vol. 106, pp. 277–283, 1998. DOI: 10.1289/ehp.98106s1277.
  • J. F. Ward, “The radiation-induced lesions which trigger the bystander effect,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 499, no. 2, pp.151–154, 2002. DOI: 10.1016/S0027-5107(01)00286-X.
  • M. C. Joiner, B. Marples, P. Lambin, S. C. Short, and I. Turesson, “Low-dose hypersensitivity: current status and possible mechanisms,” Int J Radiat Oncol Biol Phys, vol. 49, no. 2, pp.379–389, 2001. DOI: 10.1016/S0360-3016(00)01471-1.
  • R. C. Miller, et al., “The inverse dose-rate effect for oncogenic transformation by charged particles is dependent on linear energy transfer,” Radiat Res, vol. 133, no. 3, pp.360–364, 1993. DOI: 10.2307/3578222.
  • E. Porcel, et al., “Gadolinium-based nanoparticles to improve the hadrontherapy performances,” Nanomedicine, vol. 10, no. 8, pp.1601–1608, 2014. DOI: 10.1016/j.nano.2014.05.005.
  • D. Kwatra, A. Venugopal, and S. Anant, “Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer,” Transl Cancer Res, vol. 2, pp. 330–342, 2013. doi:10.3978/j.issn.2218-676X.2013.08.06.
  • E. M. Zeman, “Biologic Basis of Radiation Oncology,“ in Clinical Radiation Oncology, Vol 3rd ed.L. L., Gunderson, J. E., Tepper, Eds. Philadelphia: Elsevier, 2012, pp. 3–42. DOI: 10.1016/B978-1-4377-1637-5.00001-8.
  • C. J. Koch, M. B. Parliament, M. Brown, and R. C. Urtasun, Chemical Modifiers of Radiation Response”, in Leibel and Phillips Textbook of Radiation Oncology, Vol. 3rd ed. R. T. Hoppe, T. L. Phillips, and M. Roach, Eds. Philadelphia: Elsevier, 2010, pp. 55–68. DOI: 10.1016/B978-1-4160-5897-7.00004-4.
  • J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J Pharm Pharmacol, vol. 60, no. 8, pp. 977–985, 2008. DOI: 10.1211/jpp.60.8.0005.
  • Z. Huaizhi and N. Yuantao, “China’s ancient gold drugs,” Gold Bull, vol. 34, no. 1, pp. 24–29, 2001. DOI: 10.1007/BF03214805.
  • DrugBank, Sodium aurothiomalate, (2020).
  • M. Falahati, et al., “Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine,“ Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1864, no. 1, pp. 129435, 2020. DOI: 10.1016/j.bbagen.2019.129435.
  • J. Zhao, M. Zhou, and C. Li, “Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy,” Cancer Nanotechnol, vol. 7, no. 1, pp.1–23, 2016. DOI: 10.1186/s12645-016-0022-9.
  • C. Kim, et al., “Molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano, vol. 4, no. 8, pp.4559–4564, 2010. DOI: 10.1021/nn100736c.
  • P. Huang, et al., “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials, vol. 32, no. 36, pp.9796–9809, 2011. DOI: 10.1016/j.biomaterials.2011.08.086.
  • J. F. Hainfeld, et al., “Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma,” Phys Med Biol, vol. 55, no. 11, pp.3045, 2010. DOI: 10.1088/0031-9155/55/11/004.
  • V. D. Badwaik, et al., ”Single-step biofriendly synthesis of surface modifiable, near-spherical gold nanoparticles for applications in biological detection and catalysis,” Langmuir, vol. 27, no. 9, pp.5549–5554, May 2011. DOI: 10.1021/la105041d.
  • X. Xie, J. Liao, X. Shao, Q. Li, and Y. Lin, “The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles,” Sci Rep, vol. 7, no. 1, pp.1–9, 2017. DOI: 10.1038/s41598-016-0028-x.
  • S. A. Rodriguez-Montelongo, et al., “Synthesis, characterization, and toxicity of hollow gold nanoshells,” Journal of Nanoparticle Research, vol. 20, no. 11, pp.311, 2018. DOI: 10.1007/s11051-018-4420-2.
  • K. Magyari, et al., “Insights into the effect of gold nanospheres, nanotriangles and spherical nanocages on the structural, morphological and biological properties of bioactive glasses,” J Non Cryst Solids, vol. 522, pp. 119552, 2019. DOI: 10.1016/j.jnoncrysol.2019.119552.
  • N. Ma, et al., “Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles,” Nanospikes, and Nanorods, ACS Appl Mater Interfaces, vol. 9, no. 1, pp. 13037–13048, 2017. DOI: 10.1021/acsami.7b01112.
  • S. Bhattacharyya, R. A. Kudgus, R. Bhattacharya, and P. Mukherjee, “Inorganic nanoparticles in cancer therapy,” Pharm Res, vol. 28, no. 2, pp.237–259, 2011. DOI: 10.1007/s11095-010-0318-0.
  • S. Her, D. A. Jaffray, and C. Allen, “Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements,” Adv Drug Deliv Rev, vol. 109, pp. 84–101, 2017. DOI: 10.1016/j.addr.2015.12.012.
  • M. A. K. Abdelhalim, M. M. Mady, and M. M. Ghannam, “Physical properties of different gold nanoparticles: ultraviolet-visible and fluorescence measurements,” J Nanomed Nanotechol, vol. 3, no. 3, pp.178–194, 2012. DOI: 10.4172/2157-7439.1000133.
  • J. C. Y. Kah, K. W. Kho, C. G. L. Lee, and C. J. Richard, “Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles,” Int J Nanomedicine, vol. 2, pp. 785, 2007.
  • R. S. Riley and E. S. Day, “Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 9, no. 4, pp.e1449, 2017. DOI: 10.1002/wnan.1449.
  • U. Rajchakit and V. Sarojini, “Recent developments in antimicrobial-peptide-conjugated gold nanoparticles,” Bioconjug Chem, vol. 28, no. 11, pp.2673–2686, 2017. DOI: 10.1021/acs.bioconjchem.7b00368.
  • E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,“ Small, vol. 1, no. 3, pp. 325–327, 2005. DOI: 10.1002/smll.200400093.
  • Y. Pan, et al., “Size‐dependent cytotoxicity of gold nanoparticles, Small,” Small (Weinheim an der Bergstrasse, Germany), vol. 3, no. 11, pp.1941–1949, 2007. DOI: 10.1002/smll.200700378.
  • Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nanoscale Res Lett, vol. 4, no. 8, pp.858, 2009. DOI: 10.1007/s11671-009-9334-6.
  • J. A. Coulter, et al., “Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles,” Int J Nanomedicine, vol. 7, pp. 2673, 2012. DOI: 10.2147/IJN.S31751.
  • Q. Xia, et al., “Size-and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles,” Int J Nanomedicine, vol. 14, pp. 6957, 2019. DOI: 10.2147/IJN.S214008.
  • W.-S. Cho, et al., “Size-dependent tissue kinetics of PEG-coated gold nanoparticles,” Toxicol Appl Pharmacol, vol. 245, no. 1, pp.116–123, 2010. DOI: 10.1016/j.taap.2010.02.013.
  • H. J. Johnston, et al., “A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity,” Crit Rev Toxicol, vol. 40, no. 4, pp.328–346, 2010. DOI: 10.3109/10408440903453074.
  • B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett, vol. 6, no. 4, pp.662–668, 2006. DOI: 10.1021/nl052396o.
  • R. Shukla, et al, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir, vol. 21, no. 23, pp.10644–10654, 2005. DOI: 10.1021/la0513712.
  • T. Kim, C.-H. Lee, S.-W. Joo, and K. Lee, “Kinetics of gold nanoparticle aggregation: experiments and modeling,” J Colloid Interface Sci, vol. 318, no. 2, pp.238–243, 2008. DOI: 10.1016/j.jcis.2007.10.029.
  • S. K. Balasubramanian, et al., “Characterization, purification, and stability of gold nanoparticles,” Biomaterials, vol. 31, no. 34, pp.9023–9030, 2010. DOI: 10.1016/j.biomaterials.2010.08.012.
  • N. Oh and J.-H. Park, “Endocytosis and exocytosis of nanoparticles in mammalian cells,” Int J Nanomedicine, vol. 9, pp. 51, 2014. DOI: 10.2147/IJN.S26592.
  • J. D. Trono, et al., “Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-ray drug delivery system,” J Radiat Res, vol. 52, no. 1, pp.103–109, 2011. DOI: 10.1269/jrr.10068.
  • S. Alex and A. Tiwari, “Functionalized gold nanoparticles: synthesis, properties and applications-A review,” J Nanosci Nanotechnol, vol. 15, no. 3, pp. 1869–1894, 2015. DOI: 10.1166/jnn.2015.9718.
  • A. Tiwari, A. Chugh, C. Jin, and J. Narayan, “Role of self-assembled gold nanodots in improving the electrical and optical characteristics of zinc oxide films,” J Nanosci Nanotechnol, vol. 3, no. 5, pp. 368–371, 2003. DOI: 10.1166/jnn.2003.217.
  • X. D. Zhang, et al., “Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy,” Biomaterials, vol. 33, no. 27, pp. 6408–6419, 2012. DOI: 10.1016/j.biomaterials.2012.05.047.
  • S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan, “Mediating tumor targeting efficiency of nanoparticles through design,” Nano Lett, vol. 9, no. 5, pp. 1909–1915, 2009. DOI: 10.1021/nl900031y.
  • E. Lechtman, et al., “Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location,” Phys Med Biol, vol. 56, no. 15, pp. 4631–4647, 2011. DOI: 10.1088/0031-9155/56/15/001.
  • Y. Chen, J. Yang, S. Fu, and J. Wu, “Gold nanoparticles as radiosensitizers in cancer radiotherapy,” Int J Nanomedicine, vol. 15, pp. 9407–9430, 2020. DOI:10.2147/IJN.S272902.
  • C. Wong, et al., “Multistage nanoparticle delivery system for deep penetration into tumor tissue,” PNAS, vol. 108, no. 6, pp.2426–2431, 2011. DOI: 10.1073/pnas.1018382108.
  • K. Huang, et al., “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumoin vivo,” ACS Nano, vol. 6, no. 5, pp. 4483–4493, 2012. DOI: 10.1021/nn301282m.
  • M. Daté and M. Haruta, “Moisture effect on CO oxidation over Au/TiO2 catalyst,” J Catal, vol. 201, no. 2, pp. 221–224, 2001. DOI: 10.1006/jcat.2001.3254.
  • J. Huang, T. Takei, T. Akita, H. Ohashi, and M. Haruta, “Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2,” Appl Catal B, vol. 95, no. 3–4, pp. 430–438, 2010. DOI: 10.1016/j.apcatb.2010.01.023.
  • J. Huang, et al., “Propene epoxidation with dioxygen catalyzed by gold clusters,” Angewandte Chemie - International Edition, vol. 48, no. 42, pp. 7862–7866, 2009. DOI: 10.1002/anie.200903011.
  • Y. Deng, et al., “Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system,” J Am Chem Soc, vol. 132, no. 24, pp. 8466–8473, 2010. DOI: 10.1021/ja1025744.
  • A. Abad, A. Corma, and H. García, “Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols, in,” Pure and Applied Chemistry, vol. 79, no. 11, pp. 1847–1854, 2007. DOI: 10.1351/pac200779111847.
  • A. Abad, C. Almela, A. Corma, and H. García, “Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols,” Chemical Communications. no. 30, pp. 3178–3180, 2006. DOI:10.1039/b606257a.
  • H. Tsunoyama, H. Sakurai, Y. Negishi, and T. Tsukuda, “Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water,” J Am Chem Soc, vol. 127, no. 26, pp. 9374–9375, 2005. DOI: 10.1021/ja052161e.
  • A. Ueda and M. Haruta, “Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts,” Gold Bulletin, vol. 32, no. 1, pp. 3–11, 1999. DOI: 10.1007/BF03214783.
  • X. Bai, et al., “The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment,” International Journal of Molecular Sciences, vol. 21, no. 7, pp. 1–17, 2020. DOI: 10.3390/ijms21072480.
  • A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, vol. 26, no. 18, pp.3995–4021, 2005. DOI: 10.1016/j.biomaterials.2004.10.012.
  • T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,“ Small, vol. 4, no. 1, pp. 153–159, 2008. DOI: 10.1002/smll.200700217.
  • J. Lin, H. Zhang, Z. Chen, and Y. Zheng, “Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship,” ACS Nano, vol. 4, no. 9, pp.5421–5429, 2010. DOI: 10.1021/nn1010792.
  • H. Shmeeda, D. Tzemach, L. Mak, and A. Gabizon, “Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage,” Journal of Controlled Release, vol. 136, no. 2, pp.155–160, 2009. DOI: 10.1016/j.jconrel.2009.02.002.
  • G. Zhang, et al., “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials, vol. 30, no. 10, pp.1928–1936, 2009. DOI: 10.1016/j.biomaterials.2008.12.038.
  • C. H. J. Choi, C. A. Alabi, P. Webster, and M. E. Davis, “Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles,” Proceedings of the National Academy of Sciences, United State of America. 107 (2010) 1235–1240. DOI: 10.1073/pnas.0914140107.
  • L. Tamarkin, L. Myer, R. Haynes, and G. Paciotti, “CYT-6091 (AurimuneTM): a colloidal gold-based tumor-targeted nanomedicine,” MRS Online Proceedings Library, San Francisco. 1019 (2007).
  • M. L. Grieneisen and M. Zhang, “Nanoscience and nanotechnology: evolving definitions and growing footprint on the scientific landscape, Small,” Small (Weinheim an der Bergstrasse, Germany), vol. 7, no. 20, pp.2836–2839, 2011. DOI: 10.1002/smll.201100387.
  • J. M. Stern, et al., “Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease,” Int J Toxicol, vol. 35, no. 1, pp.38–46, 2016. DOI: 10.1177/1091581815600170.
  • A. Rostami and A. Sazgarnia, “Gold nanoparticles as cancer theranostic agents,” Nanomed J, vol. 6, pp. 147–160, 2019.
  • S. K. Libutti, et al., “Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine,” Clinical Cancer Research, vol. 16, no. 24, pp.6139–6149, 2010. DOI: 10.1158/1078-0432.CCR-10-0978.
  • S. Akhter, M. Z. Ahmad, F. J. Ahmad, G. Storm, and R. J. Kok, “Gold nanoparticles in theranostic oncology: current state-of-the-art,” Expert Opin Drug Deliv, vol. 9, no. 10, pp.1225–1243, 2012. DOI: 10.1517/17425247.2012.716824.
  • B. Jeremic, A. R. Aguerri, and N. Filipovic, “Radiosensitization by gold nanoparticles,” Clinical and Translational Oncology, vol. 15, no. 8, pp.593–601, 2013. DOI: 10.1007/s12094-013-1003-7.
  • N. Chattopadhyay, et al., “Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation,” Breast Cancer Res Treat, vol. 137, no. 1, pp.81–91, 2013. DOI: 10.1007/s10549-012-2338-4.
  • A. Yoshida, et al., “Gold nanoparticle-incorporated molecularly imprinted microgels as radiation sensitizers in pancreatic cancer,” ACS Appl Bio Mater, vol. 2, no. 3, pp.1177–1183, 2019. DOI: 10.1021/acsabm.8b00766.
  • D. Luo, et al., “Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: does size matter for targeted particles?,” Chem Sci, vol. 10, no. 35, pp.8119–8128, 2019. DOI: 10.1039/C9SC02290B.
  • X. Cheng, et al., “Light-triggered crosslinking of gold nanoparticles for remarkably improved radiation therapy and computed tomography imaging of tumors,” Nanomedicine, vol. 14, no. 22, pp.2941–2955, 2019. DOI: 10.2217/nnm-2019-0015.
  • F. Naz, V. Koul, A. Srivastava, Y. K. Gupta, and A. K. Dinda, “Biokinetics of ultrafine gold nanoparticles (AuNPs) relating to redistribution and urinary excretion: a long-term in viv study,” J Drug Target, vol. 24, no. 8, pp.720–729, 2016. DOI: 10.3109/1061186X.2016.1144758.
  • D. E. Owens III, 2006. “Peppas, opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles,” Int J Pharm, vol. 307, pp. 93–102. NA. DOI: 10.1016/j.ijpharm.2005.10.010.
  • R. Herizchi, E. Abbasi, M. Milani, and A. Akbarzadeh, “Current methods for synthesis of gold nanoparticles,” Artif Cells Nanomed Biotechnol, vol. 44, no. 2, pp. 596–602, 2016. DOI: 10.3109/21691401.2014.971807.
  • G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature Physical Science, vol. 241, no. 105, pp. 20–22, 1973. DOI: 10.1038/physci241020a0.
  • T. Yonezawa and T. Kunitake, “Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization, colloids surfaces A,” Physicochem. Eng. Aspects, vol. 149, no. 1–3, pp.193–199, 1999. DOI: 10.1016/S0927-7757(98)00309-4.
  • K. J. Watson, J. Zhu, S. B. T. Nguyen, and C. A. Mirkin, “Hybrid nanoparticles with block copolymer shell structures,” J Am Chem Soc, vol. 121, no. 2, pp. 462–463, 1999. DOI: 10.1021/ja983173l.
  • S. Yang, Y. Wang, Q. Wang, R. Zhang, and B. Ding, “UV irradiation induced formation of Au nanoparticles at room temperature: the case of pH values,” Colloids Surf A Physicochem Eng Asp, vol. 301, no. 1–3, pp. 174–183, 2007. DOI: 10.1016/j.colsurfa.2006.12.051.
  • X. Ji, et al., “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J Am Chem Soc, vol. 129, no. 45, pp. 13939–13948, 2007. DOI: 10.1021/ja074447k.
  • S. Kumar, K. S. Gandhi, and R. Kumar, “Modeling of formation of gold nanoparticles by citrate method,” Ind Eng Chem Res, vol. 46, no. 10, pp. 3128–3136, 2007. DOI: 10.1021/ie060672j.
  • M. K. Chow and C. F. Zukoski, “Gold sol formation mechanisms: role of colloidal stability,” Journal of Colloid and Interface Science , vol. 165, no. 1, pp.97–109, 1994. DOI: 10.1006/jcis.1994.1210.
  • M. Shah, “Gold nanoparticles: various methods of synthesis and antibacterial applications,” Frontiers in Bioscience, vol. 19, no. 8, pp. 1320, 2014. DOI: 10.2741/4284.
  • M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun, vol. 0, no. 7, pp.801–802, 1994. DOI: 10.1039/C39940000801.
  • A. Gole and C. J. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chemistry of Materials, vol. 16, no. 19, pp. 3633–3640, 2004. DOI: 10.1021/cm0492336.
  • Y. Chen, et al., “Shape controlled growth of gold nanoparticles by a solution synthesis,” Chemical Communications. no. 33, pp. 4181–4183, 2005. DOI:10.1039/b504911c.
  • C. R. Bridges, P. M. Dicarmine, A. Fokina, D. Huesmann, and D. S. Seferos, “Synthesis of gold nanotubes with variable wall thicknesses,” J Mater Chem A Mater, vol. 1, no. 4, pp. 1127–1133, 2013. DOI: 10.1039/c2ta00729k.
  • N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir, vol. 17, no. 22, pp. 6782–6786, 2001. DOI: 10.1021/la0104323.
  • J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys Med Biol, vol. 49, no. 18, pp.N309, 2004. DOI: 10.1088/0031-9155/49/18/N03.
  • S. Jain, et al., “Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies,” Int J Radiat Oncol Biol Phys, vol. 79, no. 2, pp.531–539, 2011. DOI: 10.1016/j.ijrobp.2010.08.044.
  • L. E. Taggart, S. J. McMahon, F. J. Currell, K. M. Prise, and K. T. Butterworth, “The role of mitochondrial function in gold nanoparticle mediated radiosensitisation,” Cancer Nanotechnol, vol. 5, no. 1, pp.1–12, 2014. DOI: 10.1186/s12645-014-0005-7.
  • L. Cui, et al., “Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells,” Radiat Res, vol. 182, no. 5, pp.475–488, 2014. DOI: 10.1667/RR13642.1.
  • Y. Liu, et al., “The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low-and high-LET radiations,” Physica Medica, vol. 31, no. 3, pp.210–218, 2015. DOI: 10.1016/j.ejmp.2015.01.006.
  • C. Wang, Y. Jiang, X. Li, and L. Hu, “Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231,” Breast Cancer, vol. 22, no. 4, pp.413–420, 2015. DOI: 10.1007/s12282-013-0496-9.
  • N. Chen, et al., “BSA capped Au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy,” RSC Adv, vol. 5, no. 51, pp.40514–40520, 2015. DOI: 10.1039/C5RA04013B.
  • T. Wolfe, et al., “Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo,” Nanomedicine, vol. 11, no. 5, pp.1277–1283, 2015. DOI: 10.1016/j.nano.2014.12.016.
  • F. Kazmi, et al., “Megavoltage radiosensitization of gold nanoparticles on a glioblastoma cancer cell line using a clinical platform,” Int J Mol Sci, vol. 21, no. 2, pp.429, 2020. DOI: 10.3390/ijms21020429.
  • K. Khoshgard, B. Hashemi, A. Arbabi, M. J. Rasaee, and M. Soleimani, “Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques,” Phys Med Biol, vol. 59, no. 9, pp.2249, 2014. DOI: 10.1088/0031-9155/59/9/2249.
  • X. Zhang, et al., “Enhanced tumor accumulation of Sub‐2 nm gold nanoclusters for cancer radiation therapy,” Adv Healthc Mater, vol. 3, no. 1, pp.133–141, 2014. DOI: 10.1002/adhm.201300189.
  • D. Y. Joh, et al., “Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization,” PLoS One, vol. 8, no. 4, pp.e62425, 2013. DOI: 10.1371/journal.pone.0062425.
  • A. Kefayat, F. Ghahremani, H. Motaghi, and M. A. Mehrgardi, “Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy,” European Journal of Pharmaceutical Sciences, vol. 130, pp. 225–233, 2019. DOI: 10.1016/j.ejps.2019.01.037.
  • Y. Dou, et al., “Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy,” ACS Nano, vol. 10, no. 2, pp.2536–2548, 2016. DOI: 10.1021/acsnano.5b07473.
  • E. Lechtman and J.-P. Pignol, “Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization,” Sci Rep, vol. 7, no. 1, pp.1–6, 2017. DOI: 10.1038/s41598-017-13736-y.
  • E. Panzarini, et al., “Intracellular transport of silver and gold nanoparticles and biological responses: an update,” Int J Mol Sci, vol. 19, no. 5, pp.1305, 2018. DOI: 10.3390/ijms19051305.
  • D. R. Cooper, D. Bekah, and J. L. Nadeau, “Gold nanoparticles and their alternatives for radiation therapy enhancement,” Front Chem, vol. 2, pp. 86, 2014. DOI: 10.3389/fchem.2014.00086.
  • F. Van den Heuvel, J.-P. Locquet, and S. Nuyts, “Beam energy considerations for gold nano-particle enhanced radiation treatment,” Phys Med Biol, vol. 55, no. 16, pp.4509, 2010. DOI: 10.1088/0031-9155/55/16/S06.
  • A. Jablonski and C. J. Powell, “Information depth and the mean escape depth in Auger electron spectroscopy and X-ray photoelectron spectroscopy,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 1, pp.274–283, 2003. DOI: 10.1116/1.1538370.
  • S. Zhu, Z. Gu, and Y. Zhao, “Harnessing tumor microenvironment for nanoparticle‐mediated radiotherapy,” Adv Ther (Weinh), vol. 1, no. 5, pp.1800050, 2018. DOI: 10.1002/adtp.201800050.
  • Y. Zheng, D. J. Hunting, P. Ayotte, and L. Sanche, “Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons,” Radiat Res, vol. 169, no. 1, pp.19–27, 2008. DOI: 10.1667/RR1080.1.
  • A. S. Wibowo, et al., Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition, Proceedings of the National Academy of Sciences. United State of America. 110 (2013) 15180–15188. DOI: 10.1073/pnas.1308827110.
  • P. Tagde, G. Kulkarni, D. K. Mishra, and P. Kesharwani, “Recent advances in folic acid engineered nanocarriers for treatment of breast cancer,” J Drug Deliv Sci Technol, vol. 56, pp. 101613, 2020. DOI: 10.1016/j.jddst.2020.101613.
  • G. Toffoli, et al., “Overexpression of folate binding protein in ovarian cancers,” Int J Cancer, vol. 74, no. 2, pp.193–198, 1997. DOI: 10.1002/(SICI)1097-0215(19970422)74:2<193::AID-IJC10>3.0.CO;2-F.
  • D. Mateo, P. Morales, A. Ávalos, and A. I. Haza, “Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells,” Toxicol Mech Methods, vol. 24, no. 3, pp.161–172, 2014. DOI: 10.3109/15376516.2013.869783.
  • B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis,” J Am Chem Soc, vol. 132, no. 5, pp.1517–1519, 2010. DOI: 10.1021/ja9102698.
  • M. Uz, V. Bulmus, and S. Alsoy Altinkaya, “Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle–cell interactions: an investigation on cell cycle, apoptosis, and DNA damage,” Langmuir, vol. 32, no. 23, pp.5997–6009, 2016. DOI: 10.1021/acs.langmuir.6b01289.
  • K. T. Butterworth, S. J. McMahon, F. J. Currell, and K. M. Prise, “Physical basis and biological mechanisms of gold nanoparticle radiosensitization,” Nanoscale, vol. 4, no. 16, pp. 4830–4838, 2012. DOI: 10.1039/c2nr31227a.
  • H. N. McQuaid, et al., “Imaging and radiation effects of gold nanoparticles in tumour cells,” Sci Rep, vol. 6, no. 1, pp.1–10, 2016. DOI: 10.1038/srep19442.
  • P. Lenard, “Ueber die lichtelektrische Wirkung,” Ann Phys, vol. 313, no. 5, pp.149–198, 1902. DOI: 10.1002/andp.19023130510.
  • U. S. Food and Drug Administration. Step 3: Clinical Research. https://www.fda.gov/patients/drug-development-process/step-3-clinical-research. Accessed: Jan 1 2022, 2018.
  • N. Ahmed , “ Effective dose enhancement using gold as a radiation sensitizer: a Monte Carlo study,“ Semantic Scholar, 2011. https://www.semanticscholar.org/paper/Effective-dose-enhancement-using-gold-as-a-a-Monte-Ahmed/7decbcfb924dd76faa032aebff4fc4d45ce645b2
  • J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br J Radiol, vol. 79, no. 939, pp.248–253, 2006. DOI: 10.1259/bjr/13169882.
  • M.J. Gazda and L. R. Coia, “Principles of radiation therapy,” Cancer Network, 2007. https://www.cancernetwork.com/view/principles-radiation-therapy
  • J. C. L. Chow, M. K. K. Leung, and D. A. Jaffray, “Monte Carlo simulation on a gold nanoparticle irradiated by electron beams,” Phys Med Biol, vol. 57, no. 11, pp.3323, 2012. DOI: 10.1088/0031-9155/57/11/3323.
  • J. H. Rose, et al., “First radiotherapy of human metastatic brain tumors delivered by a computerized tomography scanner (CTRx,” Int J Radiat Oncol Biol Phys, vol. 45, no. 5, pp.1127–1132, 1999. DOI: 10.1016/S0360-3016(99)00347-8.
  • M. de Bruin, “Glossary of terms used in nuclear analytical chemistry (Provisional),“ Pure and Applied Chemistry, vol. 54, no. 8, pp. 1533–1554, 1982. DOI: 10.1351/pac198254081533.
  • F. Boateng and W. Ngwa, “Delivery of nanoparticle-based radiosensitizers for radiotherapy applications,” Int J Mol Sci, vol. 21, no. 1, pp.273, 2020. DOI: 10.3390/ijms21010273.
  • X. Yao, C. Huang, X. Chen, Y. Zheng, and L. Sanche, “Chemical radiosensitivity of DNA induced by gold nanoparticles,” J Biomed Nanotechnol, vol. 11, no. 3, pp.478–485, 2015. DOI: 10.1166/jbn.2015.1922.
  • F. Xiao, et al., “On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles,” Nanotechnology, vol. 22, no. 46, pp.465101, 2011. DOI: 10.1088/0957-4484/22/46/465101.
  • W. Yan, et al., “Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity,” Carbohydr Polym, vol. 140, pp. 66–73, 2016. DOI: 10.1016/j.carbpol.2015.12.049.
  • N. N. Cheng, et al., “Chemical enhancement by nanomaterials under X-ray irradiation,” journal of the American Chemical Society, vol. 134, no. 4, pp.1950–1953, 2012. DOI: 10.1021/ja210239k.
  • B. Rudek, A. McNamara, H. Byrne, Z. Kuncic, and J. Schuemann, “Physical dose enhancement of gold nanoparticles and their impact on water radiolysis in radiotherapy,” in: APS March Meeting: Boston, 2019.
  • V. Ramalingam, S. Revathidevi, T. S. Shanmuganayagam, L. Muthulakshmi, and R. Rajaram, “Gold nanoparticle induces mitochondria-mediated apoptosis and cell cycle arrest in nonsmall cell lung cancer cells,” Gold Bull, vol. 50, no. 2, pp.177–189, 2017. DOI: 10.1007/s13404-017-0208-x.
  • A. B. Bucharskaya, et al., Gold Nanoparticle-Based Technologies in Photothermal/Photodynamic Treatment: The Challenges and Prospects. in: Nanotechnology and Biosensors, Elsevier, 2018, pp. 151–173.
  • B. Rudek, et al., “Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams,” physics in Medicine & Biology, vol. 64, no. 17, pp. 175005, 2019. DOI: 10.1088/1361-6560/ab314c.
  • M. Liu, et al., “Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione,” Journal of Nanoparticle Research, vol. 15, no. 8, pp.1745, 2013. DOI: 10.1007/s11051-013-1745-8.
  • H. Paquot, et al., “Radiation-induced mitotic catastrophe enhanced by gold nanoparticles: assessment with a specific automated image processing workflow,” Radiat Res, vol. 192, no. 1, pp.13–22, 2019. DOI: 10.1667/RR14962.1.
  • K. Rieck, et al., “Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population,” Br J Radiol, vol. 92, no. 1100, pp.20190283, 2019. DOI: 10.1259/bjr.20190283.
  • Q. Li, C. Huang, L. Liu, R. Hu, and J. Qu, “Effect of surface coating of gold nanoparticles on cytotoxicity and cell cycle progression,“ Nanomaterials, vol. 8, no. 12, pp. 1063, 2018 doi:10.3390/nano8121063.
  • J. Folkman “Angiogenesis,” in Biology of Endothelial Cells, E. A. Jaffe, Ed. New York: Springer, 1984. pp. 412–428.
  • D. Ribatti and E. Crivellato, “Mast cells, angiogenesis, and tumour growth, biochimica et biophysica Acta (BBA)-molecular basis of disease,” Biochimica et biophysica acta, vol. 1822, no. 1, pp.2–8, 2012. DOI: 10.1016/j.bbadis.2010.11.010.
  • P. Nowak-Sliwinska, T. Segura, and M. L. Iruela-Arispe, “The chicken chorioallantoic membrane model in biology, medicine and bioengineering,” Angiogenesis, vol. 17, no. 4, pp.779–804, 2014. DOI: 10.1007/s10456-014-9440-7.
  • K. Zabielska-Koczywąs, et al., “Doxorubicin conjugated to glutathione stabilized gold nanoparticles (Au-GSH-Dox) as an effective therapeutic agent for feline injection-site sarcomas—chick embryo chorioallantoic membrane study,” Molecules, vol. 22, no. 2, pp.253, 2017. DOI: 10.3390/molecules22020253.
  • A. B. Heeran, H. P. Berrigan, and J. O’Sullivan, “The Radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer,” Radiat Res, vol. 192, no. 6, pp.668–679, 2019. DOI: 10.1667/RR15489.1.
  • E. J. Hall, “The bystander effect,” Health Phys, vol. 85, no. 1, pp.31–35, 2003. DOI: 10.1097/00004032-200307000-00008.
  • M. Najafi, R. Fardid, G. Hadadi, and M. Fardid, “The mechanisms of radiation-induced bystander effect,” J Biomed Phys Eng, vol. 4, pp. 163, 2014.
  • A. C. Anselmo and S. Mitragotri, “A review of clinical translation of inorganic nanoparticles,” AAPS J, vol. 17, no. 5, pp.1041–1054, 2015. DOI: 10.1208/s12248-015-9780-2.
  • N. R. S. Sibuyi, et al., “Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: a review,” Nanoscale Res Lett, vol. 16, no. 1, 2021. DOI:10.1186/s11671-021-03632-w
  • E. B. Dickerson, et al., “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett, vol. 269, no. 1, pp. 57–66, 2008. DOI: 10.1016/j.canlet.2008.04.026.
  • J. Ma, et al., “Biodegradable poly(amino acid)-gold-magnetic complex with efficient endocytosis for multimodal imaging-guided chemo-photothermal therapy,” ACS Nano, vol. 12, no. 9, pp. 9022–9032, 2018. DOI: 10.1021/acsnano.8b02750.
  • S. K. Libutti, et al., “Preliminary results of a phase I clinical trial of CYT-6091: a pegylated colloidal gold-TNF nanomedicine,” Journal of Clinical Oncology, vol. 25, pp. 3603, 2007. DOI: 10.1200/jco.2007.25.18_suppl.3603.
  • ClinicalTrials.gov, Tumor necrosis factor in patients undergoing surgery for primary cancer or metastatic cancer, (2012).
  • ClinicalTrials.gov, TNF-bound colloidal gold in treating patients with advanced solid tumors, (2012).
  • ClinicalTrials.gov, Pilot study of auroLase(tm) therapy in refractory and/or recurrent tumors of the head and neck, (2017).
  • A. R. Rastinehad, et al., Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study, Proceedings of the National Academy of Sciences, United State of America. 116 (2019) 18590–18596. DOI:10.1073/pnas.1906929116.
  • C. J. Burrell, C. R. Howard, and F. A. Murphy, “Coronaviruses fenner and white’s medical virology.” (2017) 437.
  • X. Li, H. K. H. Luk, S. K. P. Lau, and P. C. Y. Woo, “Human Coronaviruses: General Features,“ in Reference Module in Biomedical Sciences. Amsterdam: Elsevier, 2019. DOI: 10.1016/B978-0-12-801238-3.95704-0.
  • M. Bchetnia, C. Girard, C. Duchaine, and C. Laprise, “The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a review of the current global status,” J Infect Public Health, vol. 13, no. 11, pp.1601–1610, 2020. DOI: 10.1016/j.jiph.2020.07.011.
  • M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique, “COVID-19 infection: origin, transmission, and characteristics of human coronaviruses,” J Adv Res, vol. 24, pp. 91–98, 2020. DOI: 10.1016/j.jare.2020.03.005.
  • N. Rabiee, et al., “Point-of-use rapid detection of sars-cov-2: nanotechnology-enabled solutions for the covid-19 pandemic,” Int J Mol Sci, vol. 21, no. 14, pp.5126, 2020. DOI: 10.3390/ijms21145126.
  • R. Medhi, P. Srinoi, N. Ngo, H.-V. Tran, and T. R. Lee, “Nanoparticle-based strategies to combat COVID-19,” ACS Appl Nano Mater, vol. 3, no. 9, pp.8557–8580, 2020. DOI: 10.1021/acsanm.0c01978.
  • M. Nicola, et al., “Evidence based management guideline for the COVID-19 pandemic-review article,” International Journal of Surgery, vol. 77, pp. 206–216, 2020. DOI: 10.1016/j.ijsu.2020.04.001.
  • G. Chauhan, et al., “Nanotechnology for COVID-19: therapeutics and vaccine research,” ACS Nano, vol. 14, no. 7, pp.7760–7782, 2020. DOI: 10.1021/acsnano.0c04006.
  • L. S. F. Frederiksen, Y. Zhang, C. Foged, and A. Thakur, “The long road toward COVID-19 herd immunity: vaccine platform technologies and mass immunization strategies,” Front Immunol, vol. 11, 2020. DOI: 10.3389/fimmu.2020.01817.
  • Y. H. Chung, V. Beiss, S. N. Fiering, and N. F. Steinmetz, “COVID-19 vaccine frontrunners and their nanotechnology design,” ACS Nano, vol. 14, no. 10, pp.12522–12537, 2020. DOI: 10.1021/acsnano.0c07197.
  • R. B. Nerli and S. C. Ghagane, “Chest computed tomography in relation to reverse-transcription polymerase chain reaction in diagnosis of coronavirus disease 2019,” Indian Journal of Health Sciences and Biomedical Research (KLEU), vol. 13, no. 3, pp.175, 2020. DOI: 10.4103/kleuhsj.kleuhsj_276_20.
  • J. Li, Z. Lin, and N. Xiong, “Effective chest CT–based diagnosis for coronavirus disease (COVID-19,” American Journal of Roentgenology, vol. 215, no. 3, pp.W37–W38, 2020. DOI: 10.2214/AJR.20.23548.
  • L. Lan, et al., “Positive RT-PCR test results in patients recovered from COVID-19,” JAMA, vol. 323, no. 15, pp.1502–1503, 2020. DOI: 10.1001/jama.2020.2783.
  • A. Zali, et al., Correlation between low-dose chest computed tomography and RT-PCR results for the diagnosis of COVID-19: A Report of 27,824 Cases in Tehran, Iran, Acad Radiol. (2020).
  • S.-H. Mozhgani, H. A. Kermani, M. Norouzi, M. Arabi, and S. Soltani, “Nanotechnology based strategies for HIV-1 and HTLV-1 retroviruses gene detection, Heliyon,” Heliyon, vol. 6, no. 5, pp.e04048, 2020. DOI: 10.1016/j.heliyon.2020.e04048.
  • S. Patra, et al., “Emerging molecular prospective of SARS-CoV-2: feasible nanotechnology based detection and inhibition,” Front Microbiol, vol. 11, pp. 2098, 2020. DOI: 10.3389/fmicb.2020.02098.
  • P. Huang, et al., “A rapid and specific assay for the detection of MERS-CoV,” Front Microbiol, vol. 9, pp. 1101, 2018. DOI: 10.3389/fmicb.2018.01101.
  • P. Moitra, M. Alafeef, K. Dighe, M. Frieman, and D. Pan, “Selective naked-eye detection of SARS-CoV-2 mediated by n gene targeted antisense oligonucleotide capped plasmonic nanoparticles,” ACS Nano, no. 6, pp. 7617–7627, 2020. DOI: 10.1021/acsnano.0c03822.
  • C. Huang, T. Wen, F.-J. Shi, X.-Y. Zeng, and Y.-J. Jiao, “Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay, ACS Omega, vol. 5, no. 21, pp. 12550–12556, 2020. DOI: 10.1021/acsomega.0c01554.
  • R. Augustine, et al., “Rapid antibody-based COVID-19 mass surveillance: relevance, challenges, and prospects in a pandemic and post-pandemic world,” J Clin Med, 2020 . DOI:10.3390/jcm9103372.
  • J. Xiang, et al., “Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19),“ MedRxiv, 2020. DOI: 10.1101/2020.02.27.20028787.
  • L. A. Layqah and S. Eissa, “An electrochemical immunosensor for the Corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes,” Microchimica Acta, vol. 186, no. 4, 2019. DOI:10.1007/s00604-019-3345-5
  • Y. Wu, H. Dang, S. G. Park, L. Chen, and J. Choo, “SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates,” Biosens Bioelectron, vol. 197, pp. 113736, 2022. DOI:10.1016/j.bios.2021.113736.
  • J. C. Huang, et al., “Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor,” Biosens Bioelectron, vol. 25, no. 2, pp. 320–325, 2009. DOI: 10.1016/j.bios.2009.07.012.
  • B. Yao, et al., “Rational engineering of the DNA walker amplification strategy by using a Au@Ti 3 C 2 @PEI-Ru(dcbpy 3 2+ nanocomposite biosensor for detection of the SARS-CoV-2 RdRp Gene,” ACS Appl Mater Interfaces, vol. 13, no. 17, pp. 19816–19824, 2021. DOI: 10.1021/acsami.1c04453.
  • P. Zhang, et al, “Evaluation of recombinant nucleocapsid and spike proteins for serological diagnosis of novel coronavirus disease 2019 (COVID-19),” MedRxiv, 2020. DOI: 10.1101/2020.03.17.20036954.
  • X. Zhu, et al., “Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based lateral flow biosensor for diagnosis of COVID-19,“ Biosensors and Bioelectronics, vol. 166, pp. 1–7. 2020. DOI: 10.1016/j.bios.2020.112437.
  • R. Augustine, et al., “Loop-mediated isothermal amplification (Lamp): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of covid-19 pandemic,” Biology (Basel), vol. 9, pp. 182, 2020.
  • Y. Zhang, S. Qu, and L. Xu, “Progress in the study of virus detection methods: the possibility of alternative methods to validate virus inactivation,” biotechnology and Bioengineering, vol. 116, no. 8, pp.2095–2102, 2019. DOI: 10.1002/bit.27003.
  • T. Wen, et al., “Development of a lateral flow immunoassay strip for rapid detection of IgG antibody against SARS-CoV-2 virus,” Analyst, vol. 145, no. 15, pp.5345–5352, 2020. DOI: 10.1039/D0AN00629G.
  • M. S. Draz and H. Shafiee, “Applications of gold nanoparticles in virus detection,“ Theranostics, vol. 8 7 , pp. 1985–2017, 2018. DOI: 10.7150/thno.23856.
  • E. Mauriz, “Recent progress in plasmonic biosensing schemes for virus detection,” Sensors, vol. 20, no. 17, pp.4745, 2020. DOI: 10.3390/s20174745.
  • S. Chen, F. Guan, F. Candotti, K. Benlagha, N. O. S. Camara, A. A. Herrada, L. K. James, J. Lei, H. Miller, M. Kubo, Q. Ning, C. Liu, “The role of B cells in COVID-19 infection and vaccination“, COVID-19 Immune Response, 2020Frontiers in Immunology, vol. 13, pp. 1–13, 2022. DOI: 10.3389/fimmu.2022.988536.
  • H. Hou, et al., “Detection of IgM and IgG antibodies in patients with coronavirus disease 2019,” Clin Transl Immunology, vol. 9, no. 5, pp.e1136, 2020. DOI: 10.1002/cti2.1136.
  • N. H. Abd Ellah, S. F. Gad, K. Muhammad, G. E. Batiha, and H. F. Hetta, “Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19,” Nanomedicine, vol. 15, no. 21, pp.2085–2102, 2020. DOI: 10.2217/nnm-2020-0247.
  • S. Gurunathan, et al., “Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses?,” Nanomaterials, vol. 10, no. 9, pp.1645, 2020. DOI: 10.3390/nano10091645.
  • J. Kim, et al., “Porous gold nanoparticles for attenuating infectivity of influenza A virus,” journal of Nanobiotechnology, vol. 18, no. 1, pp.1–11, 2020. DOI: 10.1186/s12951-020-00611-8.
  • X. Huang, et al., “Novel gold nanorod-based HR1 peptide inhibitor for Middle East respiratory syndrome coronavirus,” ACS applied Materials & Interfaces, vol. 11, no. 22, pp.19799–19807, 2019. DOI: 10.1021/acsami.9b04240.
  • A. Mehranfar and M. Izadyar, “Theoretical design of functionalized gold nanoparticles as antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),” the Journal of Physical Chemistry Letters, vol. 11, no. 24, pp.10284–10289, 2020. DOI: 10.1021/acs.jpclett.0c02677.
  • V. Vijayan, M. Mohapatra, U. Uthaman, and P. Park, “Recent advances in nanovaccines using biomimetic immunomodulatory materials,” Pharmaceutics, vol. 11, no. 10, pp.534, 2019. DOI: 10.3390/pharmaceutics11100534.
  • T. Zaheer, K. Pal, and I. Zaheer, “Topical review on nano-vaccinology: biochemical promises and key challenges,“ Process Biochemistry, vol. 100, pp. 237–244, 2020. DOI:10.1016/j.procbio.2020.09.028.
  • A. Gao, et al., “Designing a novel nano-vaccine against SARS-CoV-2,” Nano biomedicine and Engineering, vol. 12, no. 4, pp.321–324, 2020. DOI: 10.5101/nbe.v12i4.p321-324.
  • B. Bernocchi, R. Carpentier, and D. Betbeder, “Nasal nanovaccines,” international Journal of Pharmaceutics, vol. 530, no. 1–2, pp.128–138, 2017. DOI: 10.1016/j.ijpharm.2017.07.012.
  • E. V. R. Campos, et al., “How can nanotechnology help to combat COVID-19? Opportunities and urgent need,” journal of Nanobiotechnology, vol. 18, no. 1, pp.1–23, 2020. DOI: 10.1186/s12951-020-00685-4.
  • L. A. Dykman and N. G. Khlebtsov, “Immunological properties of gold nanoparticles,” chemical Science, vol. 8, no. 3, pp.1719–1735, 2017. DOI: 10.1039/C6SC03631G.
  • H. Sekimukai, et al., “Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs,” microbiology and Immunology, vol. 64, no. 1, pp.33–51, 2020. DOI: 10.1111/1348-0421.12754.
  • R. García-Álvarez, M. Hadjidemetriou, A. Sánchez-Iglesias, L. M. Liz-Marzán, and K. Kostarelos, “In vivo formation of protein Corona on gold nanoparticles,” The Effect of Their Size and Shape, Nanoscale, vol. 10, pp. 1256–1264, 2018.
  • J. Liu and Q. Peng, “Protein-gold nanoparticle interactions and their possible impact on biomedical applications,” Acta Biomaterialia, vol. 55, pp. 13–27, 2017. DOI: 10.1016/j.actbio.2017.03.055.
  • H.-W. Chen, et al., “Synthetic virus-like particles prepared via protein Corona formation enable effective vaccination in an avian model of coronavirus infection,” Biomaterials, vol. 106, pp. 111–118, 2016. DOI: 10.1016/j.biomaterials.2016.08.018.
  • S. A. C. Carabineiro, “Applications of gold nanoparticles in nanomedicine: recent advances in vaccines,” Molecules, vol. 22, no. 5, pp.857, 2017. DOI: 10.3390/molecules22050857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.