465
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve

, , , , , , , , , & show all
Pages 198-206 | Received 15 Nov 2020, Accepted 22 Feb 2021, Published online: 06 Jul 2021

References

  • Digital Around The World (internet). [cited 2020 Mar 03]. Available from: https://datareportal.com/global-digital-overview
  • Vora LJ. Evolution of mobile generation technology: 1G to 5G and review of upcoming wireless technology 5G. Int J Mod Trends Eng Res 2015;2:281–290.
  • Routray SK, Sharmila KP. 4.5 G: A milestone along the road to 5G. Proceedings of 2016 International Conference on Information Communication and Embedded Systems (ICICES); 2016 Feb 25–26; Tamilnadu, India. IEEE; 2016:1–6.
  • Naeem Z. Health risks associated with mobile phone use. Int J Health Sci 2014;8:V–VI.
  • Hardell L, Carlberg M, Gee D. Mobile phone use and brain tumour risk: early warnings early actions? In: European Environment Agency, ed. Late lessons from early warnings: science precaution innovation. Luxembourg: Publications Office of the European Union;2012:509–529.
  • Sharma A, Sharma S, Shrivastava S, et al. Mobile phone induced cognitive and neurochemical consequences. J Chem Neuroanat 2019;102:101684.
  • Alkis ME, Bilgin HM, Akpolat V, et al. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019;38:32–47.
  • Çömelekoğlu Ü, Aktas S, Demirbag B, et al. Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol. Bioelectromagnetics 2018;39:631–643.
  • Asl JF, Larijani B, Zakerkish , et al. The possible global hazard of cell phone radiation on thyroid cells and hormones: a systematic review of evidences. Environ Sci Pollut Res 2019;26:18017–18031.
  • Azadi Oskouyi E, Rajaei F, Safari Variani A, et al. Effects of microwaves (950 MHZ mobile phone) on morphometric and apoptotic changes of rabbit epididymis. Andrologia 2015;47:700–705.
  • Singh K. Acute effect of electromagnetic waves emitted from mobile phone on visual evoked potential in adult male: a preliminary study. Indian J Physiol Pharmacol 2016;60:102–107.
  • Houston BJ, Nixon B, King BV, et al. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction 2016;152:R263–R276.
  • Gautam R, Singh KV, Nirala J, et al. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia 2019;51:e13201.
  • Çeliker M, Özgür A, Tümkaya L, et al. Effects of exposure to 2100MHz GSM-like radiofrequency electromagnetic field on auditory system of rats. Braz J Otorhinolaryngol 2017;83:691–696.
  • El-Maleky NF, Ebrahim RH. Effects of exposure to electromagnetic field from mobile phone on serum hepcidin and iron status in male albino rats. Electromagn Biol Med 2019;38:66–73.
  • Christopher B, Mary YS, Khandaker MU, et al. Effects of mobile phone radiation on certain hematological parameters. Radiat Phys Chem 2020;166:108443.
  • Szmigielski S, Bortkiewicz A, Gadzicka E, et al. Alteration of diurnal rhythms of blood pressure and heart rate to workers exposed to radiofrequency electromagnetic fields. Blood Press Monit 1998;3:323–330.
  • Tahvanainen K, Niño J, Halonen P, et al. Cellular phone use does not acutely affect blood pressure or heart rate of humans. Bioelectromagnetics 2004;25:73–83.
  • Karipidis K, Elwood M, Benke G, et al. Mobile phone use and incidence of brain tumour histological types grading or anatomical location: a population-based ecological study. BMJ Open 2018;8:e024489.
  • Nilsson J, Järås J, Henriksson R, et al. No evidence for increased brain tumour incidence in the Swedish national cancer register between years 1980-2012. Anticancer Res 2019;39:791–796.
  • Milijic M. Smartphone usage statistics: around the world in 2020. [cited 2020 Mar 03]. Avaliable from: https://leftronic.com/smartphone-usage-statistics/
  • Guy AW, Lin JC, Kramar PO, et al. Effect of 2450-MHz radiation on the rabbit eye. IEEE Trans Microwave Theory Techn 1975;23:492–498.
  • Kramar P, Harris C, Emery AF, et al. Acute microwave irradiation and cataract formation in rabbits and monkeys. J Microw Power 1978;13:239–249.
  • Kojima M, Hata I, Wake K, et al. Influence of anesthesia on ocular effects and temperature in rabbit eyes exposed to microwaves. Bioelectromagnetics 2004; 25:228–233.
  • McAfee RD, Ortiz-Lugo R, Bishop R, et al. Absence of deleterious effects of chronic microwave radiation on the eyes of rhesus monkeys. Ophthalmology 1983;90:1243–1245.
  • Saito K, Saiga T, Suzuki K. Reversible irritative effect of acute 2.45GHz microwave exposure on rabbit eyes-a preliminary evaluation . J Toxicol Sci 1998;23:197–203.
  • Kues HA, Monahan JC. Microwave-induced changes to the primate eye. J Hopkins APL Tech D 1992;13:244–255.
  • Paulsson LE, Hamneriuso Y, Hansson HA, et al. Retinal damage experimentally induced by microwave radiation at 55 mW/cm2. Acta Ophthalmol (Copenh) 1979;57:183–197.
  • Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods 1980;3:129–149.
  • Odom JV, Bach M, Brigell M, et al. International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 2016;133:1–9.
  • Lowry O, Rosebrough N, Farr A, et al. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–275.
  • Yagi K. Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. In: Armstrong D, ed. Free radical and antioxidant protocols. Totowa, NJ: Humana Press; 1998. p. 107–110.
  • Aebi H. Catalase. In: Bergmeyer HU, ed. Methods of enzymatic analysis. NewYork, NY: Academic press; 1974.
  • Sun YI, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988;34:497–500.
  • Yamamoto S, Kawashiri T, Higuchi H, et al. Behavioral and pharmacological characteristics of bortezomib-induced peripheral neuropathy in rats. J Pharmacol Sci 2015;129:43–50.
  • Campadelli P, Gangai C, Pasquale F. Automated morphometric analysis in peripheral neuropathies. Comput Biol Med 1999;29:147–156.
  • Ugrenović S, Jovanović I, Vasović L, et al. Morphometric analysis of the diameter and g-ratio of the myelinated nerve fibers of the human sciatic nerve during the aging process. Anat Sci Int 2016;91:238–245.
  • Chiaramello E, Parazzini M, Fiocchi S, et al. Assessment of fetal exposure to 4G LTE tablet in realistic scenarios: effect of position gestational age and frequency. IEEE J Electromagn RF Microw Med Biol 2017;1:26–33.
  • Holder GE. Electrophysiological assessment of optic nerve disease. Eye (Lond) 2004;18:1133–1143.
  • Walsh P, Kane N, Butler S. The clinical role of evoked potentials. J Neurol Neurosur Psychiatry 2005;76:ii16–ii22.
  • You Y, Klistorner A, Thie J, et al. Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci 2011;52:6911–6918.
  • Urban P, Lukas E, Roth Z. Does acute exposure to the electromagnetic field emitted by a mobile phone influence visual evoked potentials? A pilot study. Cent Eur J Publ Heal 1998;6:288–290.
  • Hidisoglu E, Gok DK, Er H, et al. 2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration. Brain Res J 2016;1635:1–11.
  • Yakymenko I, Tsybulin O, Sidorik E, et al. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2016;35:186–202.
  • Daşdağ S, Akdağ MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat 2016;75:85–93.
  • Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics 2012;67:785–792.
  • Ayata A, Mollaoglu H, Yilmaz HR, et al. Oxidative stress‐mediated skin damage in an experimental mobile phone model can be prevented by melatonin. J Dermatol 2004;31:878–883.
  • Bilgici B, Akar A, Avci B, et al. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn Biol Med 2013;32:20–29.
  • Daşdağ S, Bilgin HM, Akdag MZ, et al. Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotechnol Biotechnol Equip 2008;22:992–997.
  • Marzook EA, Abd El Moneim AE, Elhadary AA. Protective role of sesame oil against mobile base station-induced oxidative stress. J Radiat Res Appl Sci 2014;7:1–6.
  • Balci M, Devrim E, Durak I. Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Curr Eye Res 2007;32:21–25.
  • Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem 2006;282:83–88.
  • Ni S, Yu Y, Zhang Y, et al. Study of oxidative stress in human lens epithelial cells exposed to 1.8 GHz radiofrequency fields. PloS One 2013;8:e72370.
  • Al-Qudsi F, Azzouz S. Effect of electromagnetic mobile radiation on chick embryo development. Life Sci J 2012; 9:983–991.
  • Zareen N, Khan MY, Minhas LA. Derangement of chick embryo retinal differentiation caused by radiofrequency electromagnetic fields. Congenit Anom (Kyoto) 2009;49:15–19.
  • Amer FI, El Shabaka HA, Zakaria I, Mohammed HA. Effect of microwave radiation on the retina of mice embryos. J Biol Life Sci 2013; 4:215.
  • Williams RJ, McKee A, Finch ED. Ultrastructural changes in the rabbit lens induced by microwave radiation. Ann N Y Acad Sci 1975;247:166–174.
  • D'Silva MH, Swer RT, Anbalagan J, Bhargavan R. Effect of ultrahigh frequency radiation emitted from 2G cell phone on developing lens of chick embryo: A histological study. Adv Anat 2014;798425.
  • Lu ST, Mathur SP, Stuck B, et al. Effects of high peak power microwaves on the retina of the rhesus monkey. Bioelectromagnetics 2000;21:439–454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.