1,238
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 436-457 | Received 04 Feb 2020, Accepted 29 Jun 2020, Published online: 22 Sep 2020

References

  • Waddington CH. The strategy of the genes. George Allen and Unwin; 1957. Oxon, UK.
  • Zhou JX, Huang S. Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet. 2011;27(2):55–62.
  • Burda P, Laslo P, Stopka T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia. 2010;24(7):1249–1257.
  • Fisher RC, Scott EW. Role of PU.1 in hematopoiesis. Stem Cells. 1998;16(1):25–37.
  • Chou ST, Khandros E, Bailey LC, et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood. 2009;114(5):983–994, 07.
  • Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13(1):395–412. PMID: 29414248.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
  • Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370.
  • Li C, Wang J. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLoS Comput Biol. 2013;9(8):e1003165.
  • Del Vecchio D, Abdallah H, Qian Y, et al. A blueprint for a synthetic genetic feedback controller to reprogram cell fate. Cell Syst. 2017;4(1):109–120.
  • Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283.
  • Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68.
  • Hecker M, Lambeck S, Toepfer S, et al. Gene regulatory network inference: data integration in dynamic models – a review. Biosystems. 2009;96(1):86–103.
  • Huang S, Eichler G, Bar-Yam Y, et al. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett. 2005 Apr;94(12):128701.
  • Alon U. An introduction to systems biology. Boca raton (FL): CRC press; 2006.
  • Del Vecchio D, Murray RM. Biomolecular feedback systems. Princeton (NJ): Princeton Univ Press; 2015.
  • Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403(6767):339–342.
  • Jia W, Deshmukh A, Mani SA, et al. A possible role for epigenetic feedback regulation in the dynamics of the epithelialmesenchymal transition (EMT). Phys Biol. 2019;16(6):66004.
  • Flöttmann M, Scharp T, Klipp E. A stochastic model of epigenetic dynamics in somatic cell reprogramming. Front Physiol. 2012;3:216.
  • Folguera-Blasco N, Pérez-Carrasco R, Cuyàs E, et al. A multiscale model of epigenetic heterogeneity-driven cell fate decision-making. PLoS Comput Biol. 2019;15(4):e1006592.
  • Bintu L, Yong J, Antebi YE, et al. Dynamics of epigenetic regulation at the single-cell level. Science. 2016;351(6274):720–724.
  • Takahashi K, Yamanaka S. A developmental framework for induced pluripotency. Development. 2015;142(19):3274–3285.
  • Koh KP, Rao A. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol. 2013;25(2):152–161.
  • Baylin SB. DNA methylation and gene silencing in cancer. Nature Clin Pract Oncol. 2005;2(S1):S4–S11.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–492.
  • Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777–786.
  • Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: in the right place at the right time. Science. 2018;361(6409):1336–1340.
  • Curradi M, Izzo A, Badaracco G, et al. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol. 2002;22(9):3157–3173, 05.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38, 01.
  • Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55(3):451–458, 09.
  • Kasper Dindler KH. Rasmussen, “Role of TET enzymes in DNA methylation, development, and cancer,”. Genes Dev. 2016;30(7):733–750.
  • Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517.
  • Bachman M, Uribe-Lewis S, Yang X, et al. 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol. 2015;11(8):555.
  • Bachman M, Uribe-Lewis S, Yang X, et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem. 2014;6(12):1049.
  • Li M, Belmonte JCI. Ground rules of the pluripotency gene regulatory network. Nat Rev Genet. 2017;18(3):180.
  • Victor Olariu KS, Lvkvist C. Nanog, Oct4 and TET1 interplay in establishing pluripotency. Sci Rep. 2016;6(1):25438.
  • Li D, Chen J, Pei D. The battle between TET proteins and DNA methylation for the right cell. Trends Cell Biol. 2018;28(12):973–975.
  • Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19(4):271–278.
  • Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136(3):411–419. .
  • Geng T, Zhang D, Jiang W. Epigenetic regulation of transition among different pluripotent States. Stem Cells. 2019;11:1372–1380.
  • Costa Y, Ding J, Theunissen TW, et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature. 2013;495(7441):370.
  • Sardina JL, Collombet S, Tian TV, et al. Transcription factors drive TET2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell. 2018;23(5):727–741.e9.
  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–317.
  • Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–1632. .
  • Athanasiadou R, de Sousa D, Myant K, et al. Targeting of de novo DNA methylation throughout the Oct- 4gene regulatory region in differentiating embryonic stem cells. PloS One. 2010;5(4):e9937.
  • Smith ZD, Meer A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–220.
  • Lee D-S, Shin J-Y, Tonge PD, et al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat Commun. 2014;5(1):5619. .
  • Lang AH, Li H, Collins JJ, et al. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol. 2014;10(8):e1003734.
  • Menck PJ, Heitzig J, Marwan N, et al. How basin stability complements the linear-stability paradigm. Nat Phys. 2013;9(2):89–92.
  • Ben-tabou de Leon S, Davidson EH. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Dev Biol. 2009;325(2):317–328, 01.
  • Xu C, Corces VG. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science. 2018;359(6380):1166–1170.
  • Velicescu M, Weisenberger DJ, Gonzales FA, et al. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res. 2002;62(8):2378–2384.
  • Sardina JL, Collombet S, Tian TV, et al. Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell. 2018;23(5):727–741.
  • Sasai M, Kawabata Y, Makishi K, et al. Time scales in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells. PLoS Comput Biol. 2013;9(12):e1003380.
  • Zhou W, Dinh HQ, Ramjan Z, et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet. 2018;50(4):591–602.
  • Smith H. Monotone Dynamical Systems. Providence, RI: AMS; 1995.
  • Sontag ED. Monotone and near-monotone biochemical networks. Syst Synth Biol. 2007;1(2):59–87.
  • Hirsch M. Systems of differential equations which are competitive or cooperative I: limit sets. SIAM J Appl Math. 1982;13(2):167–179.
  • Foltz G, Yoon J-G, Lee H, et al. DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis. Oncogene. 2009;28(29):2667–2677.
  • Lund K, Cole JJ, VanderKraats ND, et al. DNMT inhibitors reverse a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML. Genome Biol. 2014;15(7):406.
  • Sin-Chan P, Huang A. DNMTs as potential therapeutic targets in high-risk pediatric embryonal brain tumors. Expert Opin Ther Targets. 2014;18(10):1103.
  • Ziller MJ, Ortega JA, Quinlan KA, et al. Dissecting the functional consequences of de novo DNA methylation dynamics in human motor neuron differentiation and physiology. Cell Stem Cell. 2018;22(4):559–574. .
  • Wongtrakoongate P, Li J, Andrews PW. DNMT3B inhibits the re-expression of genes associated with induced pluripotency. Exp Cell Res. 2014;321(2):231–239.
  • Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–533. .
  • Horii T, Hatada I. Regulation of CpG methylation by DNMT and TET in pluripotent stem cells. J Reprod Dev. 2016;62(4):331–335.
  • Tsumura A, Hayakawa T, Kumaki Y, et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases DNMT1, DNMT3A and DNMT3B. Genes Cells. 2006;11(7):805–814. .
  • Liao J, Karnik R, Gu H, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47(5):469. .
  • Stelzer Y, Shivalila CS, Soldner F, et al. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell. 2015;163(1):218–229.
  • Park M, Patel N, Keung AJ, et al. Engineering epigenetic regulation using synthetic read-write modules. Cell. 2019;176(1–2):227–238.
  • Epsztejn-Litman S, Feldman N, Abu-Remaileh M, et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol. 2008;15(11):1176. .
  • Ito S, D’Alessio AC, Taranova OV, et al. Role of TET proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129.
  • Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30(7):733–750.
  • Abdallah H, “The core mammalian pluripotency network in induced pluripotent stem cell (iPSC) formation: models for genetic and epigenetic reprogramming,” Master’s thesis, Massachusetts Institute of Technology, 2018.
  • Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403(6767):335.
  • Miyamoto T, Furusawa C, Kaneko K. Pluripotency, differentiation, and reprogramming: a gene expression dynamics model with epigenetic feedback regulation. PLoS Comput Biol. 2015;11(8):e1004476.
  • Schübeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321–326.
  • Augui S, Nora EP, Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet. 2011;12(6):429–442.
  • Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–5440.
  • Michalak EM, Burr ML, Bannister AJ, et al. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 2019;20:573–589.
  • Héberlé É, Bardet AF. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63(6):727–741.
  • Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17(9):551–565.
  • Hnisz D, Shrinivas K, Young RA, et al. A phase separation model for transcriptional control. Cell. 2017;169(1):13–23.
  • Ali Al-Radhawi M, Del Vecchio D, Sontag ED. Multi-modality in gene regulatory networks with slow promoter kinetics. PLoS Comput Biol. 2019;15(2):e1006784.
  • Érdi P, Tóth J. Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Manchester (UK): Manchester University Press; 1989.
  • Ali Al-Radhawi M, Angeli D, Sontag ED. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks. PLoS Comput Biol. 2020;16(2):e1007681.
  • Wang J, Rao S, Chu J, et al. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117):364.
  • Hammachi F, Morrison GM, Sharov AA, et al. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. Cell Rep. 2012;1(2):99–109.
  • Shakya A, Callister C, Goren A, et al. Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol. 2015;35(6):1014–1025.
  • Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by DNMT3A and DNMT3B. Mol Cell Biol. 2003;23(16):5594–5605.
  • Hsieh C-L. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1. BMC Biochem. 2005;6(1):6.
  • Medvedeva YA, Khamis AM, Kulakovskiy IV, et al. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics. 2014;15(1):119.
  • Hattori N, Nishino K, Ko Y-G, et al. Epigenetic control of mouse Oct-4gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem. 2004;279(17):17063–17069.
  • Gritton KS, Seader J, Lin W-J. Global homotopy continuation procedures for seeking all roots of a nonlinear equation. Comput Chem Eng. 2001;25(7):1003–1019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.