1,969
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Exploration of genome-wide DNA methylation profiles in night shift workers

, , &
Article: 2152637 | Received 20 Sep 2022, Accepted 23 Nov 2022, Published online: 01 Dec 2022

References

  • Eurofound. European working conditions survey. 2015. Cited 2021 Jan 7 https://www.eurofound.europa.eu/data/european-working-conditions-survey.
  • Ward EM, Germolec D, Kogevinas M, IARC Working Group. Carcinogenicity of night shift work. Lancet Oncol. 2019;20(8):1058–12.
  • Torquati L, Mielke GI, Brown WJ, et al. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health. 2018;44(3):229–238.
  • Wang XS, Armstrong ME, Cairns BJ, et al. Shift work and chronic disease: the epidemiological evidence. Occup Med (Lond). 2011;61(2):78–89.
  • Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72(1):517–549.
  • Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26(10):R432–443.
  • Fritschi L, Glass DC, Heyworth JS, et al. Hypotheses for mechanisms linking shiftwork and cancer. Med Hypotheses. 2011;77(3):430–436.
  • Adams CD, Jordahl KM, Copeland W, et al. Nightshift work, chronotype, and genome-wide DNA methylation in blood. Epigenetics. 2017;12(10):833–840.
  • Bhatti P, Zhang Y, Song X, et al. Nightshift work and genome-wide DNA methylation. Chronobiol Int. 2015;32(1):103–112.
  • Lahtinen A, Häkkinen A, Puttonen S, et al. Differential DNA methylation in recovery from shift work disorder. Sci Rep. 2021;11(1):2895.
  • Ritonja JA, Aronson KJ, Flaten L, et al. Exploring the impact of night shift work on methylation of circadian genes. Epigenetics. 2021;1–10. DOI:10.1080/15592294.2020.1786304
  • Carugno M, Maggioni C, Ruggiero V, et al. Can night shift work affect biological age? Hints from a cross-sectional study on hospital female nurses. Int J Environ Res Public Health. 2021;18(20):10639.
  • White AJ, Kresovich JK, Xu Z, et al. Shift work, DNA methylation and epigenetic age. Int J Epidemiol. 2019;48(5):1536–1544.
  • Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–384.
  • Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–327.
  • Scholtens S, Smidt N, Swertz MA, et al. Cohort Profile: lifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2015;44(4):1172–1180.
  • Stolk RP, Rosmalen JG, Postma DS, et al. Universal risk factors for multifactorial diseases. Eur J Epidemiol. 2008;23(1):67–74.
  • Garde AH, Begtrup L, Bjorvatn B, et al. How to schedule night shift work in order to reduce health and safety risks. Scand J Work Environ Health. 2020;46(6):557.
  • Stevens RG, Hansen J, Costa G, et al. Considerations of circadian impact for defining ‘shift work’in cancer studies: IARC working group report. Occup Environ Med. 2011;68(2):154–162.
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–1369.
  • Touleimat N, Tost J. Complete pipeline for Infinium(®) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–341.
  • Hansen KD (2017). “IlluminaHumanMethylationEPICanno.ilm10b4.hg19: annotation for Illumina’s EPIC methylation arrays. R package version 0.6.0.”, 2021, from https://bitbucket.com/kasperdanielhansen/Illumina_EPIC.
  • Leek JTJWE, Parker HS, Fertig EJ, et al. sva: surrogate variable analysis. R package version 3.34.0. 2019. Cited 2021. https://bioconductor.org/packages/release/bioc/html/sva.html.
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13(1):86.
  • van Rooij J, Mandaviya PR, Claringbould A, et al. Evaluation of commonly used analysis strategies for epigenome- and transcriptome-wide association studies through replication of large-scale population studies. Genome Biol. 2019;20(1):235.
  • Qi L, Teschendorff AE. Cell-type heterogeneity: why we should adjust for it in epigenome and biomarker studies. Clin Epigenetics. 2022;14(1):31.
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.
  • Mansell G, Gorrie-Stone TJ, Bao Y, et al. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics. 2019;20(1):366.
  • Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–288.
  • Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–367.
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.
  • Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–591.
  • Verdonk P, Klinge I. Mainstreaming sex and gender analysis in public health genomics. Gender Med. 2012;9(6):402–410.
  • Asllanaj E, Zhang X, Ochoa Rosales C, et al. Sexually dimorphic DNA-methylation in cardiometabolic health: a systematic review. Maturitas. 2020;135:6–26.
  • McCartney DL, Zhang F, Hillary RF, et al. An epigenome-wide association study of sex-specific chronological ageing. Genome Med. 2019;12(1):1.
  • Zhu Y, Stevens RG, Hoffman AE, et al. Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 2011;28(10):852–861.
  • Ahmadi SA, Tranmer JE, Ritonja JA, et al. DNA methylation of circadian genes and markers of cardiometabolic risk in female hospital workers: an exploratory study. Chronobiol Int. 2022;39(5):735–746.
  • Bukowska-Damska A, Reszka E, Kaluzny P, et al. Sleep quality and methylation status of core circadian rhythm genes among nurses and midwives. Chronobiol Int. 2017;34(9):1211–1223.
  • Ritonja JA, Aronson KJ, Leung M, et al. Investigating the relationship between melatonin patterns and methylation in circadian genes among day shift and night shift workers. Occup Environ Med. 2022;79(10):673–680.
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–179.
  • Rodier F, Coppé JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11(8):973–979.
  • Costa G. Shift work and occupational medicine: an overview. Occup Med (Lond). 2003;53(2):83–88.
  • Loef B, Baarle DV, van der Beek AJ, et al. The association between exposure to different aspects of shift work and metabolic risk factors in health care workers, and the role of chronotype. PLoS One. 2019;14(2):e0211557.
  • Streng AA, Loef B, Dolle MET, et al. Night shift work characteristics are associated with several elevated metabolic risk factors and immune cell counts in a cross-sectional study. Sci Rep. 2022;12(1):2022.
  • Loef B, Nanlohy NM, Jacobi RHJ, et al. Immunological effects of shift work in healthcare workers. Sci Rep. 2019;9(1):18220.
  • Loef B, Dolle MET, Proper KI, et al. Night-shift work is associated with increased susceptibility to SARS-CoV-2 infection. Chronobiol Int. 2022;39(8):1100–1109.
  • Loef B, van Baarle D, van der Beek AJ, et al. Shift work and respiratory infections in health-care workers. Am J Epidemiol. 2019;188(3):509–517.