4,375
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Management of chronic myeloid leukaemia: current treatment options, challenges, and future strategies

, ORCID Icon, , , , , , , , , , & ORCID Icon show all
Article: 2196866 | Received 16 Nov 2022, Accepted 26 Mar 2023, Published online: 20 Apr 2023

References

  • Rowley JD. A New consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243:290–293. doi:10.1038/243290a0.
  • Sandberg AA, Gemmill RM, Hecht BK, etal. The Philadelphia chromosome: a model of cancer and molecular cytogenetics. Cancer Genet Cytogenet. 1986;21:129–146.
  • Nair AP, Barnett MJ., Broady RC, et al. Allogeneic hematopoietic stem cell transplantation is an effective salvage therapy for patients with chronic myeloid leukemia presenting with advanced disease or failing treatment with tyrosine kinase inhibitors. Biology of Blood and Marrow Transplantation. 2015;21(8):1437–1444. doi:10.1016/j.bbmt.2015.04.005.
  • Hochhaus A, Larson RA, Guilhot F, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. New England Journal of Medicine. 2017;376(10):917–927. doi:10.1056/NEJMoa1609324.
  • Rumjanek VM, Vidal RS, Maia RC. Multidrug resistance in chronic myeloid leukaemia: how much can we learn from MDR–CML cell lines? Biosci Rep. 2013;33; doi:10.1042/bsr20130067.
  • Soverini S, Branford S, Nicolini FE, et al. Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Leukemia. 2011;25(2):161–170.
  • Nader A-D, Andrew J, Yassin MA, et al. Molecular monitoring of patients with Chronic Myeloid Leukemia (CML) in the state of Qatar: optimization of techniques and response to Imatinib. QScience Connect. 2014;2014(1).
  • Kalmanti L, Saussele S, Saussele S, et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study iv. Leukemia. 2015;29:1123–1132. doi:10.1038/leu.2015.36.
  • Milojkovic D, Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res. 2009;15:7519–7527. doi:10.1158/1078-0432.CCR-09-1068.
  • Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–979.
  • Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.
  • Jain AG, Gesiotto QJ, Ball S, et al. Incidence of pleural effusion with Dasatinib and the effect of switching therapy to Bosutinib in patients with chronic phase CML. Blood. 2021;138(Supplement 1):1484–1484. doi:10.1182/blood-2021-152017.
  • Keller G, Schafhausen P, Brummendorf TH. Bosutinib: a dual SRC/ABL kinase inhibitor for the treatment of chronic myeloid leukemia. Expert Rev Hematol. 2009;2:489–497. doi:10.1586/ehm.09.42.
  • Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–1796. doi:10.1056/NEJMoa1306494.
  • Zhou T, Commodore L, Huang WS, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des. 2011;77(1):1–11.
  • E Dianne Pulte H, Lauren SL, Price R, et al. FDA approval summary: revised indication and dosing regimen for Ponatinib based on the results of the OPTIC trial. The Oncologist. 2022;27(2):149–157.
  • Levinson NM, Boxer SG. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One. 2012;7.
  • Davis MI, Hunt JP, Herrgard S. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1046–1051.
  • Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16(2):122–131.
  • Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–880.
  • Chindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000;289:1938–1942.
  • Wang D, Pan H, Wang Y. T315L: a novel mutation within BCR-ABL kinase domain confers resistance against ponatinib. Leuk Lymphoma. 2017;58:1733–1735.
  • Valent P. Imatinib-resistant chronic myeloid leukemia (CML): Current concepts on pathogenesis and new emerging pharmacologic approaches. Biologics : targets and therapy. 2007;1(4):433–448.
  • Al-Dewik NI, Jewell AP, Yassin MA, et al. Studying the impact of presence of point mutation, insertion mutation and additional chromosomal abnormalities in chronic myeloid leukemia patients treated with imatinib mesylate in the State of Qatar. QScience Connect. 2014;2014(1).
  • Al-Dewik N I E. BCR-ABL Kinase Point Mutations don't Correlate with the Resistance of Chronic Myelocytic Leukemia (CML) to Imatinib Mesylate (IM); A Study on CML Patient Population in Qatar. 2011.
  • Al-Dewik N, Jewell A, Yassin MA, et al. Molecular monitoring of patients with Chronic Myeloid Leukemia (CML) in the state of Qatar: optimization of techniques and response to Imatinib. QScience Connect. 2014;2014(1).
  • Izz EA-DN. BCR-ABL kinase point mutations don't correlate with the resistance of Chronic Myelocytic Leukemia (CML) to Imatinib Mesylate (IM); a study on CML patient population in Qatar. Qatar Foundation Annual Research Forum Proceedings. 2011.
  • Barnes D J, Palaiologou D, Panousopoulou E. BCR-ABL expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res. 2005;65:8912–8919.
  • Hochhaus A, Kreil S, Corbin AS. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16(11):2190–2196.
  • Jabbour E, Kantarjian H, Jones D. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006;20:1767–1773.
  • Hochhaus A, Kreil S, Corbin AS. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16(11):2190–2196.
  • Amarante-Mendes G P, Datoguia Rana A. BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics. 2022;14(1).
  • Haouala A, Widmer N, Duchosal MA, et al. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011;117:e75–e87. doi:10.1182/blood-2010-07-294330.
  • Tian X, Zhang H, Heimbach T, et al. Effect of vemurafenib on the pharmacokinetics of a single dose of digoxin in patients with BRAFV600mutation-positive metastatic malignancy. J Clin Pharmacol. 2018;58:1067–1073. doi:10.1002/jcph.1111.
  • Filppula A, Laitila J, Neuvonen P, et al. Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012;165:2787–2798. doi:10.1111/j.1476-5381.2011.01732.x.
  • Mlejnek P, Dolezel P, Faber E, et al. Interactions of N-desmethyl imatinib, an active metabolite of imatinib, with P-glycoprotein in human leukemia cells. Ann Hematol. 2011;90:837–842. doi:10.1007/s00277-010-1142-7.
  • Gréen H, Skoglund K, Rommel F, etal. CYP3A activity influences imatinib response in patients with chronic myeloid leukemia: a pilot study on in vivo CYP3A activity. European journal of clinical pharmacology. 2010;66(4):383–386.
  • Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96:340–348. doi:10.1038/clpt.2014.129.
  • Saiz-Rodriguez M, Almenara S, Navares-Gomez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8; doi:10.3390/biomedicines8040094.
  • Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30:883–891. doi:10.1124/dmd.30.8.883.
  • Harivenkatesh N, Kumar L, Bakhshi S, etal. Influence of MDR1 and CYP3A5 Genetic Polymorphisms on Trough Levels and Therapeutic Response of Imatinib in Newly Diagnosed Patients with Chronic Myeloid Leukemia. Pharmacol. Res. 2017;120:138–145.
  • Cargnin S, Ravegnini G, Soverini S, et al. Impact of SLC22A1 and CYP3A5 genotypes on imatinib response in chronic myeloid leukemia: a systematic review and meta-analysis. Pharmacol Res. 2018;131:244–254. doi:10.1016/j.phrs.2018.02.005.
  • Adehin A, Adeagbo BA, Kennedy MA, et al. Inter-individual variation in imatinib disposition: any role for prevalent variants ofCYP1A2,CYP2C8,CYP2C9, andCYP3A5in Nigerian CML patients? Lymphoma. 2019;60:216–221. doi:10.1080/10428194.2018.1466291.
  • Kaehler M, Cascorbi I. Pharmacogenomics of impaired tyrosine kinase inhibitor response: lessons learned from chronic myelogenous leukemia. Front Pharmacol. 2021;12:696960.
  • Pushpam D, Bakhshi S. Pharmacology of tyrosine kinase inhibitors in chronic myeloid leukemia; a clinician’s perspective. DARU J Pharm Sci. 2020;28(1):371–385.
  • Hussaarts KG, Veerman GM, Jansman FG, et al. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol. 2019;11:1758835918818347.
  • Nader A-D, Hisham M, Samara Muthanna M. Is adherence to Imatinib Mesylate treatment among patients with Chronic Myeloid Leukemia associated with better clinical outcomes in Qatar?. Clinical Medicine Insights: Oncology. 2016.
  • Nader A-D, Hisham M. Ghasoub Rola, etal. Studying the Impact of Imatinib Mesylate (IM) Adherence in Chronic Myeloid Leukemia (CML) patients’ Responses in the State of Qatar. Blood. 2014;124(21):5537–5537.
  • Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci. 2008;65:3145–3167. doi:10.1007/s00018-008-8111-5.
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. 1976;455:152–162. doi:10.1016/0005-2736(76)90160-7.
  • Klukovits A, Krajcsi P. Mechanisms and therapeutic potential of inhibiting drug efflux transporters. Expert Opin Drug Metab Toxicol. 2015;11:907–920. doi:10.1517/17425255.2015.1028917.
  • Juliano R L, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. 1976;455:152–162.
  • Anreddy N, Gupta P, Kathawala R, etal. Tyrosine Kinase Inhibitors as Reversal Agents for ABC Transporter Mediated Drug Resistance. Molecules. 2014;19:13848–13877.
  • Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient hoechst 33342 efflux pump and Is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–512. doi:10.1182/blood.V99.2.507.
  • Skoglund K, Boiso Moreno S, Jönsson JI, etal. Single-nucleotide polymorphisms of ABCG2 increase the efficacy of tyrosine kinase inhibitors in the K562 chronic myeloid leukemia cell line. Pharmacogenetics and genomics. 2014;24(1):52–61.
  • Gardner E, Burger H, Vanschaik R, et al. Association of enzyme and transporter genotypes with the pharmacokinetics of Imatinib. Clin. Pharmacol. Ther. 2006;80:192–201.
  • Takahashi N, Miura M, Scott SA, etal. Influence of CYP3A5 and drug transporter polymorphisms on Imatinib trough concentration and clinical response among patients with chronic phase Chronic Myeloid Leukemia. J. Hum. Genet. 2010;55:731–737.
  • Jiang ZP, Zhao XL, Takahashi N, et al. Trough concentration andABCG2polymorphism are better to predict imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics. 2017;18(1):35–56.
  • Poonkuzhali B, Lamba J, Strom S, et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab. Dispos. 2008;36:780–795.
  • Ai-Dewik NI, Jewell AP, Yassin MA, et al. Studying the impact of presence of alpha acid glycoprotein and protein glycoprotein in chronic myeloid leukemia patients treated with imatinib mesylate in the state of Qatar. Biomark Cancer. 2015;7:63–67.
  • Nader A-D, Andrew J. Studying the impact of presence of Alpha Acid Glycoprotein and Protein Glycoprotein in Chronic Myeloid Leukemia patients treated with Imatinib Mesylate in state of Qatar. Blood. 2015;126(23):4846–4846.
  • Eddin A-DNI. Elevation of Alpha Acid Glycoprotein (AGP) does not correlate with the resistance of Chronic Myeloid Leukaemia (CML) to Imatinib Mesylate (IM). 2011.
  • White DL, Saunders VA, Dang P, et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but Not nilotinib (AMN107): reduced OCT-1 activity Is the cause of Low In vitro sensitivity to imatinib. Blood. 2006;108:697–704. doi:10.1182/blood-2005-11-4687.
  • Davies A, Jordanides NE, Giannoudis A, et al. Nilotinib concentration in cell lines and primary CD34+ chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia. 2009;23:1999–2006. doi:10.1038/leu.2009.166.
  • Nies AT, Schaeffeler E, Van Der Kuip H, et al. Cellular uptake of imatinib into leukemic cells is independent of human organic cation transporter 1 (OCT1). Cancer Res. 2014;20:985–994. doi:10.1158/1078-0432.ccr-13-1999.
  • Watkins DB, Hughes TP, White DL. BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase. Leukemia. 2015;29:1832–1838. doi:10.1038/leu.2015.168.
  • Marzia V, Andrea M, Luisa T. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients. Journal of Hematology and Oncology. 2017;10(1).
  • Ismail MA, Vezzalini M, Morsi H, et al. Predictive value of tyrosine phosphatase receptor gamma for the response to treatment tyrosine kinase inhibitors in chronic myeloid leukemia patients. Sci Rep. 2021;11(1):8833.
  • Ismail MA, Sorio C. Protein tyrosine phosphatase receptor gamma as potential therapeutic target for chronic myeloid leukemia patients. Cancer Control. 2022;29.
  • Ismail Mohamed . A. Evaluation of protein tyrosine phosphatase receptor gamma (PTPRG) as a biomarker in chronic myeloid leukaemia patients in the State of Qatar. 2021.
  • Ismail MA, Samara M, Sayab Al. Aberrant DNA methylation of PTPRG as one possible mechanism of its under-expression in CML patients in the state of Qatar. Mol Genet Genomic Med. 2020;8(10.
  • Tomasello L, Vezzalini M, Boni C, et al. Regulative loop between β-catenin and protein tyrosine receptor type γ in Chronic Myeloid Leukemia. International Journal of Molecular Sciences. 2020;21(7).
  • Ismail MA, Samara M, Al Sayab A, et al. Aberrant DNA methylation of PTPRG as one possible mechanism of its under-expression in CML patients in the state of Qatar. Mol Genet Genomic Med. 2020;8(10):e1319.
  • Ismail MA, Nasrallah GK, Monne M, et al. Description of PTPRG genetic variants identified in a cohort of chronic myeloid leukemia patients and their ability to influence response to tyrosine kinase inhibitors. Gene. 2022;813:146101.
  • Nader A-D, Maria Monne, Araby M, et al. Novel molecular findings in Protein Tyrosine Phosphatase Receptor Gamma (PTPRG) among Chronic Myelocytic Leukemia (CML) patients studied by Next Generation Sequencing (NGS): a pilot study in patients from the State of Qatar and Italy. Blood. 2016;128(22):5427–5427.
  • Boni C, Sorio C. Current views on the interplay between tyrosine kinases and phosphatases in Chronic Myeloid Leukemia. Cancers. 2021;13(10):2311. doi:10.3390/cancers13102311.
  • Lecca P, Sorio C. Accurate prediction of the age incidence of chronic myeloid leukemia with an improved two-mutation mathematical model. Integr Biol (Camb). 2016;8(12):1261–1275.
  • San José-Enériz E, Román-Gómez J, Jiménez-Velasco A, et al. Microrna expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer. 2009;8:69, doi:10.1186/1476-4598-8-69.
  • Turrini E, Haenisch S, Laechelt S, et al. Microrna profiling in K-562 cells under imatinib treatment. Pharmacogenet Genomics. 2012;22:198–205. doi:10.1097/FPC.0b013e328350012b.
  • Stankovic M, Nikolic A, Nagorni-Obradovic L, et al. Gene–gene interactions between glutathione S-transferase M1 and matrix metalloproteinases 1, 9, and 12 in chronic obstructive pulmonary disease in serbians. J Chronic Obstructive Pulmonary Dis. 2017;14(6):581–589.
  • Shibuta T, Honda E, Shiotsu H, etal. Imatinib Induces Demethylation of miR-203 Gene: an Epigenetic Mechanism of Anti-tumor Effect of Imatinib. Leuk. Res. 2013;37:1278–1286.
  • Hershkovitz-Rokah O, Modai S, Pasmanik-Chor M, etal. MiR-30e induces apoptosis and sensitizes K562 cells to imatinib treatment via regulation of the BCR-ABL protein. Cancer Lett. 2014;56:597–605.
  • Nader I, Salsabel A-D, Nada Elshami. Expression Profiling of Micro RNAs (MiRNAs) and Long Non-Coding RNAs (lncRNAs) in Chronic Myeloid Leukemia (CML) Patients in the State of Qatar. Blood. 2017;130.
  • Litwinska Z, Machalinski B. Mirnas in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma. 2017;58:1297–1305.
  • Giulia L, Latorre R. Gene expression landscape of chronic myeloid leukemia K562 cells overexpressing the tumor suppressor gene PTPRG. International Journal of Molecular Sciences. 2022;23(17.
  • Hanekamp D, Cloos J, Schuurhuis GJ. Leukemic stem cells: identification and clinical application. Int J Hematol. 2017;105(5):549–557.
  • Houshmand M, Simonetti G, Circosta P, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33(7):1543–1556.
  • Morotti A, Panuzzo C, Fava C, et al. Kinase-inhibitor-insensitive cancer stem cells in chronic myeloid leukemia. Expert Opin Biol Ther. 2014;14(3):287–299.
  • Soverini S, De Santis S, Monaldi C, et al. Targeting leukemic stem cells in chronic myeloid leukemia: is it worth the effort? Int J Mol Sci. 2021;22(13).
  • Chen Y, Zou J, Cheng F, et al. Treatment-Free remission in chronic myeloid leukemia and new approaches by targeting leukemia stem cells. Front Oncol. 2021;11(4465).
  • Herrmann O, Kuepper MK, Bütow M, et al. Infliximab therapy together with tyrosine kinase inhibition targets leukemic stem cells in chronic myeloid leukemia. BMC Cancer. 2019;19(1):658.
  • Hughes TP, Hochhaus A, Branford S, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the international randomized study of interferon and STI571 (IRIS). Blood. 2010;116(19):3758–3765.
  • Douxfils J, Haguet H, Mullier F, et al. Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival. JAMA Oncol. 2016;2(5):625–632.
  • Dusetzina SB, Winn AN, Abel GA, et al. Cost sharing and adherence to tyrosine kinase inhibitors for patients with chronic myeloid leukemia. J Clin Oncol. 2014;32(4):306–311.
  • Haddad FG, Sasaki K, Issa GC, et al. Treatment-freeremission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors. Am J Hematol. 2022;97:856–864.
  • Hochhaus A, Masszi T, Giles FJ, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia. 2017;31(7):1525–1531.
  • Mahon F-X, Réa D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–1035.
  • Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–522.
  • Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematology. 2019;6(7):e375–e383.
  • Rea D, Ame S, Berger M, et al. Discontinuation of tyrosine kinase inhibitors in chronic myeloid leukemia: recommendations for clinical practice from the French chronic myeloid leukemia study group. Cancer. 2018;124(14):2956–2963.
  • Cayssials E, Torregrosa-Diaz J, Gallego-Hernanz P, et al. Low-dose tyrosine kinase inhibitors before treatment discontinuation do not impair treatment-free remission in chronic myeloid leukemia patients: results of a retrospective study. Cancer. 2020;126(15):3438–3447. doi:10.1002/cncr.32940.
  • Fassoni AC, Baldow C, Roeder I, et al. Reduced tyrosine kinase inhibitor dose is predicted to be as effective as standard dose in chronic myeloid leukemia: a simulation study based on phase III trial data. Haematologica. 2018;103(11):1825–1834. doi:10.3324/haematol.2018.194522.
  • Lesko LJ, Schmidt S. Individualization of drug therapy: history, present state, and opportunities for the future. Clin Pharmacol Ther. 2012;92(4):458–466.
  • García-Ferrer M, Wojnicz A, Mejía G, et al. Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: a systematic review and meta-analysis. Clin Ther. 2019;41:2558–2570.e7.e7. doi:10.1016/j.clinthera.2019.10.009.
  • Takahashi N, Wakita H, Miura M, et al. Correlation between imatinib pharmacokinetics and clinical response in Japanese patients with chronic-phase chronic myeloid leukemia. Clin Pharmacol Ther. 2010;88(6):809–813.
  • Marin D, Bazeos A, Mahon FX, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–2388.
  • Davies A, Giannoudis A, Zhang JE, et al. Dual glutathione-S-transferase-θ1 and -μ1 gene deletions determine imatinib failure in chronic myeloid leukemia. Clin Pharmacol Ther. 2014;96(6):694–703.
  • Qiu HB, Zhuang W, Wu T, et al. Imatinib-induced ophthalmological side-effects in GIST patients are associated with the variations of EGFR, SLC22A1, SLC22A5 and ABCB1. Pharmacogenomics J 2018;18(3):460–466.
  • Yamakawa Y, Hamada A, Nakashima R, et al. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit. 2011;33(2):244–250.
  • Petain A, Kattygnarath D, Azard J, et al. Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res. 2008;14(21):7102.
  • Delbaldo C, Chatelut E, Ré M, et al. Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res. 2006;12(20 Pt 1):6073–6078.
  • Widmer N, Decosterd LA, Csajka C, et al. Population pharmacokinetics of imatinib and the role of alpha1-acid glycoprotein. Br J Clin Pharmacol. 2006;62(1):97–112.
  • Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC soft tissue and bone sarcoma group. Cancer Chemother Pharmacol. 2005;55(4):379–386.
  • Adeagbo BA, Olugbade TA, Durosinmi MA, et al. Population pharmacokinetics of imatinib in nigerians with chronic myeloid leukemia: clinical implications for dosing and resistance. The Journal of Clinical Pharmacology. 2017;57(12):1554–1563.
  • Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat. Commun. 2020;11:1–14. doi:10.1038/s41467-019-13993-7.
  • Garcia-Tunon I, Alonso-Perez V, Vuelta E, et al. Splice donor site sgRNAs enhance CRISPR/Cas9-mediated knockout efficiency. PLoS ONE. 2019;14:e0216674. doi:10.1371/journal.pone.0216674.
  • Luo Z, Gao M, Huang N, et al. Efficient disruption of BCR-ABL gene by CRISPR RNA-guided FokI nucleases depresses the oncogenesis of chronic myeloid leukemia cells. J Exp Clin Cancer Res. 2019;38:224, doi:10.1186/s13046-019-1229-5.
  • Huang N, Huang Z, Gao M, et al. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of BCR-ABL oncogene with zinc finger nucleases. J Exp Clin Cancer Res. 2018;37:62, doi:10.1186/s13046-018-0732-4.
  • García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, et al. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitroand in a xenograft model of chronic myeloid leukemia. Oncotarget. 2017;8(16):26027–26040. doi:10.18632/oncotarget.15215.
  • Vuelta E, García-Tuñón I, Hernández-Carabias P, et al. Future approaches for treating chronic myeloid leukemia: CRISPR therapy. Biology. 2021;10(2).
  • Kevin Z, Mohammad Y, Sawsan M. Optimizing clinical workflow using precision medicine and advanced data analytics. Processes. 2023;11(3).
  • Al-Dewik NI, Younes SN, Essa MM, et al. Making biomarkers relevant to healthcare innovation and precision medicine. Processes. 2022;10(6):1107. doi:10.3390/pr10061107.
  • AL-Dewik NI, Qoronfleh MW. Genomics and precision medicine: molecular diagnostics innovations shaping the future of healthcare in Qatar. Advances in Public Health. 2019;2019:1–11. doi:10.1155/2019/3807032.