519
Views
63
CrossRef citations to date
0
Altmetric
Review

Clinical advances of nanocarrier-based cancer therapy and diagnostics

, , &
Pages 75-92 | Received 04 May 2016, Accepted 21 Jun 2016, Published online: 07 Jul 2016

References

  • WHO: cancer. 2015 [cited 2016 Jan 27]. Available from: http://www.who.int/mediacentre/factsheets/fs297/es/
  • Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • Estanqueiro M, Amaral MH, Conceicao J, et al. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631–648.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578.
  • Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;2:1–13.
  • Siminska E, Koba M. Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids. 2016. doi:10.1007/s00726-016-2215-2.
  • Ravi Kumar MN, Blanco-Prieto MJ, Waterhouse DN. Nanotherapuetics. Cancer Lett. 2013;334(2):155–156.
  • Al-Hadiya BM, Bakheit AH, Abd-Elgalil AA. Imatinib mesylate. Profiles Drug Subst Excip Relat Methodol. 2014;39:265–297.
  • Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60(8):886–898.
  • Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces. 2014;6(24):21859–21873.
  • Bregoli L, Movia D, Gavigan-Imedio JD, et al. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine. 2016;12(1):81–103.
  • Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467–483.
  • Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64(13):1394–1416.
  • Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–476.
  • Jebar AH, Errington-Mais F, Vile RG, et al. Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. J Gen Virol. 2015;96:1533–1550.
  • Yang H. Targeted nanosystems: advances in targeted dendrimers for cancer therapy. Nanomedicine. 2016;12(2):309–316.
  • Lim DJ, Sim M, Oh L, et al. Carbon-based drug delivery carriers for cancer therapy. Arch Pharm Res. 2014;37(1):43–52.
  • Lasa-Saracibar B, Estella-Hermoso De Mendoza A, Guada M, et al. Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin Drug Deliv. 2012;9(10):1245–1261.
  • Fonseca AC, Serra AC, Coelho JF. Bioabsorbable polymers in cancer therapy: latest developments. Epma J. 2015;6(22). doi:10.1186/s13167-015-0045-z.
  • Biswas S, Kumari P, Lakhani PM, et al. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2015;83:184–202.
  • Van Gaal EVB, Crommelin DJA. Non-biological complex drugs. Basel: Springer; 2015. Polymeric micelles; p. 11–76.
  • Genexol PM injection. Seoul: Samyang Biopharm; 2013 [cited 2016 Feb 13]. Available from: https://www.samyangbiopharm.com/eng/ProductIntroduce/injection01
  • Paclitaxel polymeric micelle formulation - Samyang. Adis Insight News: Springer International Publishing AG; 2015 [cited 2016 Feb 13]. Available from: http://adisinsight.springer.com/drugs/800034369
  • Sorrento announces first patient dosed in registration trial to evaluate bioequivalence between cynviloq and abraxane. San Diego (CA): Sorrento Therapeutics; 2014 [cited 2016 Feb 13]. Available from: http://sorrentotherapeutics.com/sorrento-announces-first-patient-dosed-in-registration-trial-to-evaluate-bioequivalence-between-cynviloq-and-abraxane/
  • Bioequivalence study of IG-001 versus nab-paclitaxel in metastatic or locally recurrent breast cancer (TRIBECA). clinicaltrial.gov: Sorrento Therapeutics, Inc; 2016 [cited 2016 Feb 13]. Available from: https://clinicaltrials.gov/ct2/show/NCT02064829
  • Valle JW, Armstrong A, Newman C, et al. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs. 2011;29(5):1029–1037.
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91(10):1775–1781.
  • PRODUCTS. Supratek website: Supratek Pharma Inc; 2016 [cited 2016 Apr 7]. Available from: http://www.supratek.com/pipeline/products
  • Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release. 2001;74(1–3):295–302.
  • A phase III study of NK105 in patients with breast cancer. ClinicalTrials.gov: Nippon Kayaku; 2016 [cited 2016 Mar 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT01644890?term=NCT01644890&rank=1
  • Hamaguchi T, Doi T, Eguchi-Nakajima T, et al. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res. 2010;16(20):5058–5066.
  • Takahashi A, Yamamoto Y, Yasunaga M, et al. NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 2013;104(7):920–925.
  • IND application for NC-6300 (K-912) epirubicin micelle in japan. EvaluateTM: EvaluateClinicalTrialsTM; 2013 [cited 2016 Feb 14]. Available from: http://www.evaluategroup.com/Universal/View.aspx?type=Story&id=425130
  • Plummer R, Wilson RH, Calvert H, et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer. 2011;104(4):593–598.
  • Cabral H, Nishiyama N, Okazaki S, et al. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J Control Release. 2005;101(1–3):223–232.
  • Hu Q, Rijcken CJ, Van Gaal EV, et al. Core-cross-linked polymeric micelles: a highly versatile platform to generate nanomedicines with divergent properties [thesis]. Beijing: 2015. Chapter 2, Core-cross-linked polymeric micelles: a versatile nanomedicine; p. 19–60
  • Hu Q, Rijcken CJ, Bansal R, et al. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials. 2015;53:370–378.
  • Ke X, Ng VW, Ono RJ, et al. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release. 2014;193:9–26.
  • Talelli M, Barz M, Rijcken CJ, et al. Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today. 2015;10(1):93–117.
  • Thipparaboina R, Chavan RB, Kumar D, et al. Micellar carriers for the delivery of multiple therapeutic agents. Colloids Surf B Biointerfaces. 2015;135:291–308.
  • Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001–1018.
  • Vicent MJ, Duncan R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 2006;24(1):39–47.
  • Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer research campaign phase I/II committee. Clin Cancer Res. 1999;5(1):83–94 .
  • Zhong YJ, Shao LH, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (review). Int J Oncol. 2013;42(2):373–378.
  • Seymour LW, Ferry DR, Anderson D, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–1676.
  • Rademaker-Lakhai JM, Terret C, Howell SB, et al. A phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res. 2004;10(10):3386–3395.
  • Nowotnik DP, Cvitkovic E. ProLindac (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev. 2009;61(13):1214–1219.
  • Duncan R. Handbook of safety assessment of nanomaterials: from toxicological testing to personalized medicine. Boca Raton (FL): Pan Stanford Publishing; 2015. Nanomedicine(s) and their regulation; p. 1–43.
  • Bissett D, Cassidy J, De Bono JS, et al. Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br J Cancer. 2004;91(1):50–55.
  • Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev. 2009;61(13):1177–1188.
  • Li W, Zhan P, De Clercq E, et al. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38:421–424.
  • Scomparin A, Salmaso S, Bersani S, et al. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci. 2011;42(5):547–558.
  • Wente MN, Kleeff J, Buchler MW, et al. DE-310, a macromolecular prodrug of the topoisomerase-I-inhibitor exatecan (DX-8951), in patients with operable solid tumors. Invest New Drugs. 2005;23(4):339–347.
  • Seymour LW, Ferry DR, Kerr DJ, et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol. 2009;34(6):1629–1636.
  • Meerum Terwogt JM, Ten Bokkel Huinink WW, Schellens JH, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs. 2001;12(4):315–323.
  • Soepenberg O, De Jonge MJ, Sparreboom A, et al. Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clin Cancer Res. 2005;11(2 Pt 1):703–711.
  • Danhauser-Riedl S, Hausmann E, Schick HD, et al. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest New Drugs. 1993;11(2–3):187–195.
  • Walsh MD, Hanna SK, Sen J, et al. Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin Cancer Res. 2012;18(9):2591–2602.
  • Mersana therapeutics initiates phase 1b extension study of XMT-1001 in gastric cancer and non-small cell lung cancer. Mersana Press Releases: Mersana Therapeutics, Inc; 2011 [cited 2016 Feb 24]. Available from: http://www.mersana.com/news-events/pr-2011-03-25.php
  • Yurkovetskiy AV, Fram RJ. XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev. 2009;61(13):1193–1202.
  • Yordanov G. Colloid and interface chemistry for nanotechnology. In: Francesca Rovera, editor. Advanced strategies for drug delivery in nanomedicine. Boca Raton (FL): CRC Press; 2014; p. 3–27.
  • Kundranda MN, Niu J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des Devel Ther. 2015;9:3767–7.
  • Zhou Q, Sun X, Zeng L, et al. A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine. 2009;5(4):419–423.
  • Hubbard D, Brayden DJ, Ghandehari H. Handbook of nanobiomedical research: fundamentals, applications and recent developments. Boston (MA): Northeastern University: World Scientific; 2014. Nanopreparation for oral administration; p. 153–202.
  • Onxeo files application for key livatag® patent — onxeo indleverer ansøgning om vigtigt patent for livatag®. Onxeo Press Releases: Onxeo; 2015 [cited 2016 Feb 18]. Available from: http://www.onxeo.com/en/onxeo-files-application-key-livatag-patent-onxeo-indleverer-ansogning-om-vigtigt-patent-livatag/
  • Orphan oncology products.livatag. ONXEO website; 2016 [cited 2016 Apr 11]. Available from: http://www.onxeo.com/en/nos-produits/portefeuilles-produits/orphelins-oncologie/
  • Zhang Z, Liao G, Nagai T, et al. Mitoxantrone polybutyl cyanoacrylate nanoparticles as an anti-neoplastic targeting drug delivery system. Int J Pharm. 1996;139:1–8.
  • Zhang L, Zhang N. How nanotechnology can enhance docetaxel therapy. Int J Nanomedicine. 2013;8:2927–2941.
  • Conley SJ, Baker TL, Burnett JP, et al. CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer. Breast Cancer Res Treat. 2015;150(3):559–567.
  • Pham E, Birrer MJ, Eliasof S, et al. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin Cancer Res. 2015;21(4):808–1.
  • Young C, Schluep T, Hwang J, et al. CRLX101 (formerly IT-101)-A novel nanopharmaceutical of camptothecin in clinical development. Curr Bioact Compd. 2011;7(1):8–14.
  • Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64(21):7668–7672.
  • Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today. 2016;19(3):157–168.
  • Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319–2331.
  • Search of: nanoparticles MRI. ClinicalTrial.gov: National Institutes of Health; 2016 [cited 2016 Mar 1]. Available from: https://clinicaltrials.gov/ct2/results?term=nanoparticles±MRI&no_unk=Y
  • Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.
  • Fadeel B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62(3):362–374.
  • Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol. 1989;152(1):167–173.
  • Ryan SM, Brayden DJ. Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol. 2014;18:120–128.
  • Hahn PF, Stark DD, Lewis JM, et al. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology. 1990;175(3):695–700.
  • Heesakkers RA, Jager GJ, Hovels AM, et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology. 2009;251(2):408–414.
  • Saeed M, Wendland MF, Engelbrecht M, et al. Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur Radiol. 1998;8(6):1047–1053.
  • Cortajarena AL, Ortega D, Ocampo SM, et al. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine. 2014;1(2). doi:10.5772/58841.
  • Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13(2):125–138.
  • Ma K, Mendoza C, Hanson M, et al. Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core–shell silica nanoparticle growth in water. Chem Mater. 2015;27(11):4119–4133.
  • Gomez L, Sebastian V, Irusta S, et al. Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles. Lab Chip. 2014;14(2):325–332.
  • Gomez L, Arruebo M, Sebastian V, et al. Facile synthesis of SiO2–Au nanoshells in a three-stage microfluidic system. J Mater Chem. 2012;22:21420–21425.
  • Sebastian V, Lee SK, Zhou C, et al. One-step continuous synthesis of biocompatible gold nanorods for optical coherence tomography. Chem Commun (Camb). 2012;48(53):6654–6656.
  • Luque-Michel E, Larrea A, Lahuerta C, et al. A simple approach to obtain hybrid au-loaded polymeric nanoparticles with a tunable metal load. Nanoscale. 2016;8(12):6495–6506.
  • Phillips E, Penate-Medina O, Zanzonico PB, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149.
  • Sun X, Cai W, Chen X. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc Chem Res. 2015;48(2):286–294.
  • Seibold U, Wängler B, Schirrmacher R, et al. Bimodal imaging probes for combined PET and OI: recent developments and future directions for hybrid agent development. BioMed Res Int. 2014;1–13. doi:10.1155/2014/153741.
  • Arap W, Pasqualini R, Montalti M, et al. Luminescent silica nanoparticles for cancer diagnosis. Curr Med Chem. 2013;20(17):2195–2211.
  • Choi CH, Zuckerman JE, Webster P, et al. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci USA. 2011;108(16):6656–6661.
  • Bradbury MS, Phillips E, Montero PH, et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5(1):74–86.
  • Christensen A, Juhl K, Charabi B, et al. Feasibility of real-time near-infrared fluorescence tracer imaging in sentinel node biopsy for oral cavity cancer patients. Ann Surg Oncol. 2016;23:565–572.
  • Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013 May 21;25(19):2641–2660.
  • Bao C, Conde J, Polo E, et al. A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine (Lond). 2014;9(15):2353–2370.
  • Lin AW, Lewinski NA, West JL, et al. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt. 2005;10(6):064035. doi:10.1117/1.2141825.
  • Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles. Aaps J. 2015;17(5):1041–1054.
  • Loo C, Hirsch L, Lee MH, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett. 2005;30(9):1012–1014.
  • Sebastian V, Arruebo M, Santamaria J. Reaction engineering strategies for the production of inorganic nanomaterials. Small. 2014;10(5):835–853.
  • Garbayo E, Estella-Hermoso De Mendoza A, Blanco-Prieto MJ. Diagnostic and therapeutic uses of nanomaterials in the brain. Curr Med Chem. 2014;21(36):4100–4131.
  • Funkhouser J. Reinventing pharma: the theranostic revolution. Curr Drug Discov. 2002;2:17–19.
  • Muthu MS, Leong DT, Mei L, et al. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660–677.
  • Ryu JH, Lee S, Son S, et al. Theranostic nanoparticles for future personalized medicine. J Control Release. 2014;190:477–484.
  • Zhu X, Anquillare ELB, Farokhzad OC, et al. Cancer theranostics. San Diego (CA): Elsevier; 2014. Polymer- and protein-based nanotechnologies for cancer theranostics; p. 419–436.
  • Clancy MK. Polymer- and protein- bades nanotechnology for cancer theranostics. San Diego (CA): Elsevier; 2014. Clinical translation and regulation of theranostics; p. 439–546.
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281.
  • Huang YY, Sharma SK, Dai T, et al. Can nanotechnology potentiate photodynamic therapy? Nanotechnol Rev. 2012;1(2):111–146.
  • Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19(4):474–481.
  • Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–269.
  • Babu A, Templeton AK, Munshi A, et al. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech. 2014;15(3):709–721.
  • Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–4.
  • Lammers T, Kiessling F, Hennink WE, et al. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7(6):1899–1912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.