609
Views
47
CrossRef citations to date
0
Altmetric
Review

The design and scale-up of spray dried particle delivery systems

, , &
Pages 47-63 | Received 23 Dec 2016, Accepted 18 Apr 2017, Published online: 04 May 2017

References

  • Plumb K. Continuous processing in the pharmaceutical industry changing the mind set. Chem Eng Res Des. 2005;83:730–738.
  • Lee SL, O’Connor TF, Yang X, et al. Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov. 2015;10:191–199.
  • Dellamary LA, Tarara TE, Smith DJ, et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17:168–174.
  • Costa E, Fiilipe N, Andrade G, et al. Scale-up & QBD approaches for spray-dried inhalation formulations. Available from: www.ondrugdelivery.com, 2014, pp. 3–8.
  • Al-Khattawi A, Koner J, Rue P, et al. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. Eur J Pharm Biopharm. 2015;94:1–10.
  • Masters K. Spray drying handbook. 5th ed. Harlow: Longman Scientific & Technical; 1991.
  • Oakley DE. Scale-up of spray dryers with the aid of computational fluid dynamics. Dry Technol. 1994;12:217–233.
  • Okuyama K, Abdullah M, Lenggoro IW, et al. Preparation of functional nanostructured particles by spray drying. Adv Powder Technol. 2006;17:587–611.
  • Mezhericher M, Levy A, Borde I. Theoretical models of single droplet drying kinetics: a review. Dry Technol. 2010;28:278–293.
  • Mosén K, Bäckström K, Thalberg K, et al. Particle formation and capture during spray drying of inhalable particles. Pharm Dev Technol. 2005;9:409–417.
  • Al-Obaidi H, Brocchini S, Buckton G. Anomalous properties of spray dried solid dispersions. J Pharm Sci. 2009;98:4724–4737.
  • Nolan LM, Tajber L, McDonald BF, et al. Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. Eur J Pharm Sci. 2009;37:593–602.
  • Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38:728–746.
  • Schiffter H, Lee G. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 2: drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase. J Pharm Sci. 2007;96:2284–2295.
  • Foster T, Leatherman M. Powder characteristics of proteins spray-dried from different spray-dryers. Drug Dev Ind Pharm. 1995;21:1705–1723.
  • PRNewswire. Pharmaceutical spray drying market, 2014–2024 Available from: http://www.reportlinker.com/p02185204/Pharmaceutical–Spray–Drying–Market–2014–2024.html 2014.
  • Rojas J, Kumar V. Effect of polymorphic form on the functional properties of cellulose: a comparative study. Carbohydr Polym. 2012;87:2223–2230.
  • EMA CHMP. INTELENCE: Etravirine. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/000900/WC500034183.pdf 2008.
  • EMA CHMP. Assessment report Kalydeco. 2012. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002494/WC500130766.pdf
  • Kwong AD, Kauffman RS, Hurter P, et al. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol. 2011;29:993–1003.
  • Neumiller JJ, Campbell RK. Technosphere insulin: an inhaled prandial insulin product. Biodrugs. 2010;24:165–172.
  • VanDevanter DR, Geller DE. Tobramycin administered by the TOBI® Podhaler® for persons with cystic fibrosis: a review. Med Devices Evid Res. 2011;4:179–188.
  • FDA. FDA approves Raplixa to help control bleeding during surgery: first spray-dried fibrin sealant approved by the agency. FDA News Release 2015 [cited 2016 Nov 30]. Available from: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm445247.htm
  • Hancock B, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.
  • Paudel A, Worku ZA, Meeus J, et al. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453:253–284.
  • Greenhalgh DJ, Williams AC, Timmins P, et al. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88:1182–1190.
  • Widanapathirana L, Tale S, Reineke TM. Dissolution and solubility enhancement of the highly lipophilic drug phenytoin via interaction with poly(N-isopropylacrylamide-co-vinylpyrrolidone) excipients. Mol Pharm. 2015;12:2537–2543.
  • Teixeira CCC, Mendonca LM, Bergamaschi MM, et al. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS Pharmscitech. 2016;17:252–261.
  • Mihajlovic T, Kachrimanis K, Graovac A, et al. Improvement of aripiprazole solubility by complexation with (2-hydroxy)propyl-β-cyclodextrin using spray drying technique. AAPS Pharmscitech. 2012;13:623–631.
  • Sonje VM, Kumar L, Puri V, et al. Effect of counterions on the properties of amorphous atorvastatin salts. Eur J Pharm Sci. 2011;44:462–470.
  • Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603–616.
  • Kim DW, Kang JH, Oh DH, et al. Development of novel flurbiprofen-loaded solid self-microemulsifying drug delivery system using gelatin as solid carrier. J Microencapsul. 2012;29:323–330.
  • Kamel AO, Mahmoud AA. Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. J Biomed Nanotechnol. 2013;9:26–39.
  • Ha ES, Ok J, Noh J, et al. Fabrication and evaluation of celecoxib microparticle surface modified by hydrophilic cellulose and surfactant. Int J Biol Macromol. 2015;72:1473–1478.
  • Martins RM, Machado MO, Pereira SV, et al. Engineering active pharmaceutical ingredients by spray drying: effects on physical properties and in vitro dissolution. Dry Technol. 2012;30:905–913.
  • Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine: nicotinamidecocrystals by spray drying. Eur J Pharm Sci. 2014;62:251–257.
  • Seville PC, Li H, Learoyd TP. Spray-dried powders for pulmonary drug delivery. Crit Rev Ther Drug Carr Syst. 2007;24:307–360.
  • Tsapis N, Bennett D, Jackson B, et al. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA. 2002;99:12001–12005.
  • Littringer EM, Mescher A, Schroettner H, et al. Spray dried mannitol carrier particles with tailored surface properties – the influence of carrier surface roughness and shape. Eur J Pharm Biopharm. 2012;82:194–204.
  • El-Sherbiny IM, Smyth HDC. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres I. Int J Pharm. 2010;395:132–141.
  • Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery. Science (80-). 1997;276:1868–1871.
  • Vanbever R, Mintzes JD, Wang J, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16:1735–1742.
  • Edwards DA. Delivery of biological agents by aerosols. Aiche J. 2002;48:2–6.
  • Straub JA, Chickering DE, Church CC, et al. Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release. 2005;108:21–32.
  • Re M. Microencapsulation by spray drying. Dry Technol. 1998;16:1195–1236.
  • Gavini E, Sanna V, Juliano C, et al. Compressed biodegradable matrices of spray-dried PLGA microspheres for the modified release of Ketoprofen. J Microencapsul. 2003;20:193–201.
  • Sun Y, Cui F, Shi K, et al. The effect of chitosan molecular weight on the characteristics of spray-dried methotrexate-loaded chitosan microspheres for nasal administration. Drug Dev Ind Pharm. 2009;35:379–386.
  • Nettey H, Haswani D, Oettinger CW, et al. Formulation and testing of vancomycin loaded albumin microspheres prepared by spray-drying. J Microencapsul. 2006;23:632–642.
  • Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery. Science (80-). 1997;276:1868–1871.
  • Kusonwiriyawong C, Atuah K, Alpar OH, et al. Cationic stearylamine-containing biodegradable microparticles for DNA delivery. J Microencapsul. 2004;21:25–36.
  • Tawfeek H, Khidr S, Samy E, et al. Poly(glycerol adipate-co-ω-pentadecalactone) Spray-dried microparticles as sustained release carriers for pulmonary delivery. Pharm Res. 2011;28:2086–2097.
  • Kilicarslan M, Gumustas M, Yildiz S, et al. Preparation and characterization of chitosan-based spray-dried microparticles for the delivery of clindamycin phosphate to periodontal pockets. Curr Drug Deliv. 2014;11:98–111.
  • Lee LY, Ranganath SH, Fu Y, et al. Paclitaxel release from micro-porous PLGA disks. Chem Eng Sci. 2009;64:4341–4349.
  • Nadal JM, Gomes MLS, Borsato DM, et al. Spray-dried Eudragit® L100 microparticles containing ferulic acid: formulation, in vitro cytoprotection and in vivo anti-platelet effect. Mater Sci Eng C Mater Biol Appl. 2016;64:318—328.
  • Guo X, Zhang X, Ye L, et al. Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J Drug Target. 2014;22:421–427.
  • Kohane DS, Anderson DG, Yu C, et al. pH-triggered release of macromolecules from spray-dried polymethacrylate microparticles. Pharm Res. 2003;20:1533–1538.
  • Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24:763–768.
  • Chávez BE, Ledeboer AM. Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol. 2007;25:1193–1201.
  • Ledet GA, Richard AG, Bostanian LA, et al. Spray-drying of biopharmaceuticals. Varshney, D and Singh, M (eds). In: Lyophilized biologics and vaccines. NewYork:Springer. 2015. p. 273–297.
  • Yoshii H, Neoh TL, Furuta T, et al. Encapsulation of proteins by spray drying and crystal transformation method. Dry Technol. 2008;26:1308–1312.
  • Haque MA, Adhikari B. Drying and denaturation of proteins in spray drying process. Mujumdar, AS (ed). In: Handbook of industrial drying. Florida:CRC Press. 2015. p. 971–983.
  • Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015;223:40–54.
  • Haggag YA, Faheem AM. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Front Pharmacol. 2015;6:1–5.
  • Gil M, Vicente J, Gaspar F. Scale-up methodology for pharmaceutical spray drying. Chim Oggi/Chemistry Today. 2010;28:18–22.
  • Broadhead J, Edmond Rouan SK, Rhodes CT. The spray drying of pharmaceuticals. Drug Dev Ind Pharm. 1992;18:1169–1206.
  • Walton DE. The morphology of spray-dried particles a qualitative view. Dry Technol. 2000;18:1943–1986.
  • Wan LSC, Heng PWS, Chia CGH. Spray drying as a process for microencapsulation and the effect of different coating polymers. Drug Dev Ind Pharm. 1992;18:997–1011.
  • Moran A, Buckton G. Adjusting and understanding the properties and crystallisation behaviour of amorphous trehalose as a function of spray drying feed concentration. Int J Pharm. 2007;343:12–17.
  • Sou T, Morton D, Williamson M, et al. Spray-dried influenza antigen with trehalose and leucine produces an aerosolizable powder vaccine formulation that induces strong systemic and mucosal immunity after pulmonary administration. J Aerosol Med Pulm Drug Deliv. 2015;28:361–371.
  • Andya JD, Maa Y-F, Costantino HR, et al. The effect of formulation excipients on protein stability and aerosol performance of spray-dried powders of a recombinant humanized anti-IgE monoclonal antibody1. Pharm Res. 1999;16:350–358.
  • Harvie DJE, Langrish TAG, Fletcher DF. A computational fluid dynamics study of a tall-form spray dryer. Food Bioprod Process. 2002;80:163–175.
  • Tewa-Tagne P, Degobert G, Briançon S, et al. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs. Pharm Res. 2007;24:650–661.
  • Choińska A, Mituła P, Śliwka P, et al. Bacteriophage encapsulation: trends and potential applications. Trends Food Sci Technol. 2015;45:212–221.
  • Lee SH, Heng D, Ng WK, et al. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Pharm Nanotechnol. 2011;403:192–200.
  • Masters K, Vestergaard I. Aseptic and closed cycle spray drying in pharmaceutical – biochemicals manufacture. Process Biochem. 1975;10:1–21.
  • Rizi K, Green RJ, Donaldson M, et al. Production of pH-responsive microparticles by spray drying: investigation of experimental parameter effects on morphological and release properties. J Pharm Sci. 2011;100:566–579.
  • Bain D, Munday D, Smith A. Solvent influence on spray-dried biodegradable microspheres. J Microencapsul. 1999;16:453–474.
  • Esposito E, Roncarati R, Cortesi R, et al. Production of Eudragit microparticles by spray-drying technique: influence of experimental parameters on morphological and dimensional characteristics. Pharm Dev Technol. 2000;5:267–278.
  • Wu JX, Yang M, van den Berg F, et al. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. Eur J Pharm Sci. 2011;44:610–620.
  • Lefebvre AH. Atomization and sprays. Boca Raton (FL): CRC Press; 1989.
  • Thybo P, Hovgaard L, Andersen SK, et al. Droplet size measurements for spray dryer scale-up. Pharm Dev Technol. 2008;13:93–104.
  • Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interface Sci. 2003;265:296–303.
  • El-Sayed TM, Wallack DA, King CJ. Changes in particle morphology during drying of drops of carbohydrate solutions and food liquids. 1. Effect of composition and drying conditions. Ind Eng Chem Res. 1990;29:2346–2354.
  • Mahlin D, Bergström CAS. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur J Pharm Sci. 2013;49:323–332.
  • Nešić S, Vodnik J. Kinetics of droplet evaporation. Chem Eng Sci. 1991;46:527–537.
  • Handscomb CS, Kraft M, Bayly AE. A new model for the drying of droplets containing suspended solids. Chem Eng Sci. 2009;64:628–637.
  • Fletcher DF, Guo B, Harvie DJE, et al. What is important in the simulation of spray dryer performance and how do current CFD models perform? Appl Math Model. 2006;30:1281–1292.
  • Ullum T, Sloth J, Brask A, et al. Predicting spray dryer deposits by CFD and an empirical drying model. Dry Technol. 2010;28:723–729.
  • Ozmen L, Langrish TAG. Comparison of glass transition temperature and sticky point temperature for skim milk powder. Drying Technol. 2002;20:1177–1192.
  • Palzer S. Agglomeration of dehydrated consumer foods. In: Salman AD, Hounslow MJ, Seville JPK, editors. Granulation. Amsterdam:Elsevier B.V.; 2007. p. 591–671.
  • Bhandari B, Howes T. Implication of glass transition for the drying and stability of dried foods. J Food Eng. 1999;40:71–79.
  • Graham LJ, Taillon R, Mullin J, et al. Pharmaceutical process/equipment design methodology case study: cyclone design to optimize spray-dried-particle collection efficiency. Comput Chem Eng. 2010;34:1041–1048.
  • Cortes C, Gil A. Modeling the gas and particle flow inside cyclone separators. Prog Energy Combust Sci. 2007;33:409–452.
  • Peng W, Hoffmann AC, Dries HWA, et al. Experimental study of the vortex end in centrifugal separators: the nature of the vortex end. Chem Eng Sci. 2005;60:6919–6928.
  • Maa YF, Nguyen PA, Sit K, et al. Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotechnol Bioeng. 1998;60:301–309.
  • Maury M, Murphy K, Kumar S, et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59:565–573.
  • Masters K. Scale-up of spray dryers. Dry Technol. 1994;12:235–257.
  • Straub JA, Chickering DE, Lovely JC, et al. Intravenous hydrophobic drug delivery: a porous particle formulation of paclitaxel (AI-850). Pharm Res. 2005;22:347–355.
  • Schaefer J, Lee G. Post-chamber inactivation of catalase powder during spray drying in bench-top machines. Powder Technol. 2015;277:231–236.
  • Schaefer J, Lee G. Making large, flowable particles of protein or disaccharide in a mini-scale spray dryer. Pharm Dev Technol. 2015;1–9.
  • Rogers S, Wu WD, Lin SXQ, et al. Particle shrinkage and morphology of milk powder made with a monodisperse spray dryer. Biochem Eng J. 2012;62:92–100.
  • Pietiläinen J. Spray drying particles from ethanol-water mixtures intended for inhalation. Helsinki:University of Helsinki. 2013.
  • Nandiyanto ABD, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol. 2011;22:1–19.
  • Charlesworth DH, Marshall WR. Evaporation from drops containing dissolved solids. Aiche J. 1960;6:9–23.
  • Handscomb CS, Kraft M, Bayly AE. A new model for the drying of droplets containing suspended solids after shell formation. Chem Eng Sci. 2009;64:228–246.
  • Mezhericher M, Levy A, Borde I. Theoretical drying model of single droplets containing insoluble or dissolved solids. Drying Technol. 2007;25:1025–1032.
  • Leong K. Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations. J Aerosol Sci. 1987;18:511–524.
  • Walton D, Mumford C. The morphology of spray-dried particles: the effect of process variables upon the morphology of spray-dried particles. Chem Eng Res Des. 1999;77:442–460.
  • Vicente J, Pinto J, Menezes J, et al. Fundamental analysis of particle formation in spray drying. Powder Technol. 2013;247:1–7.
  • Alzghoul A, Alhalaweh A, Mahlin D, et al. Experimental and computational prediction of glass transition temperature of drugs. J Chem Inf Model. 2014;54:3396–3403.
  • Kerc̆ J, Src̆Ic̆ S. Thermal analysis of glassy pharmaceuticals. Thermochim Acta. 1995;248:81–95.
  • Lloyd RJ, Chen XD, Hargreaves, JB. Glass transition and caking of spray‐dried lactose. Int J Food Sci Tech. 1996;31(4):305–311.
  • Beever P. Spontaneous ignition of milk powders in a spray-drying plant. J Soc Dairy Technol. 1984;37:68–71.
  • Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.
  • Leong KH. Morphology of aerosol particles generated from the evaporation of solution drops. J Aerosol Sci. 1981;12:417–435.
  • Elversson J, Millqvist-Fureby A, Alderborn G, et al. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci. 2003;92:900–910.
  • Elversson J, Millqvist-Fureby A. Particle size and density in spray drying-effects of carbohydrate properties. J Pharm Sci. 2005;94:2049–2060.
  • Wang F-J, Wang C-H. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J Control Release. 2002;81:263–280.
  • Schindler A, Harper D. Relationships and unperturbed chain dimensions. J Chromatogr Sci. 1979;17:2593–2599.
  • Lakowicz JR. Principles of fluorescence spectroscopy. Newyork:Springer Science & Business Media; 2006.
  • Downton GE, Flores-Luna JL, King CJ. Mechanism of stickiness in hygroscopic, amorphous powders. Ind Eng Chem Fundam. 1982;21:447–451.
  • ICH Expert Working Group. Impurities: guideline for residual solvents Q3C (R6). 2011. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3C/Q3C_R6__Step_4.pdf
  • Santos L, Cordeiro P, Temtem M. Scale-up of spray dried amorphous solid dispersions. Eur Indust Pharm. 2013;19:4–8.
  • Lechuga‐Ballesteros D. Trileucine improves aerosol performance and stability of spray‐dried powders for inhalation. J Pharm Sci. 2008;97:287–302.
  • Magdassi A, Kamyshny A. Surface activity and functional properties of proteins. In: Magdassi S, editor. Surface activity of proteins. New York (NY): Marcel Dekker; 1996. p. 1–38.
  • Dobry DE, Settell DM, Baumann JM, et al. A model-based methodology for spray-drying process development. J Pharm Innov. 2009;4:133–142.
  • Maa YF, Costantino HR. Nguyen PA, et al. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm Dev Technol. 1997;2:213–223.
  • Adhikari B, Howes T, Bhandari BR, et al. Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: experiments and modeling. Dry Technol. 2003;21:839–873.
  • Maas SG, Schaldach G, Littringer EM, et al. The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technol. 2011;213:27–35.
  • Liu LX, Marziano I, Bentham AC, et al. Effect of particle properties on the flowability of ibuprofen powders. Int J Pharm. 2008;362:109–117.
  • Hickey AJ. Pharmaceutical inhalation aerosol technology. New York (NY): Marcel Dekker; 2004.
  • Najafabadi AR, Gilani K, Barghi M, et al. The effect of vehicle on physical properties and aerosolisation behaviour of disodium cromoglycate microparticles spray dried alone or with l-leucine. Int J Pharm. 2004;285:97–108.
  • Gac JM, Gradoń L. A distributed parameter model for the spray drying of multicomponent droplets with a crust formation. Adv Powder Technol. 2013;24:324–330.
  • Al-Khattawi A, Alyami H, Townsend B, et al. Evidence-based nanoscopic and molecular framework for excipient functionality in compressed orally disintegrating tablets. Plos One. 2014;9:e101369.
  • Lay Ma UV, Ziegler GR, Floros JD. Effect of sucrose on physical properties of spray-dried whole milk powder. J Food Sci. 2008;73:431–438.
  • Adler M, Unger M, Lee G. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm Res. 2000;17:863–870.
  • Imtiaz-Ul-Islam M, Langrish TAG. Comparing the crystallization of sucrose and lactose in spray dryers. Food Bioprod Process. 2009;87:87–95.
  • Genskow LR. Dryer scale-up methodology for the process industries. Dry Technol. 1994;12:47–58.
  • Thybo P, Hovgaard L, Lindeløv JS, et al. Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion. Pharm Res. 2008;25:1610–1620.
  • Kemp IC, Hartwig T, Herdman R, et al. Spray drying with a two-fluid nozzle to produce fine particles: atomization, scale-up, and modeling. Dry Technol. 2016;34:1243–1252.
  • Chen XD. Heat-mass transfer and structure formation during drying of single food droplets. Dry Technol. 2004;22:179–190.
  • FDA. Guidance for Industry, waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. 2015. Available from: https://www.fda.gov/downloads/Drugs/Guidances/ucm070246.pdf
  • Ivey JW, Vehring R. The use of modeling in spray drying of emulsions and suspensions accelerates formulation and process development. Comput Chem Eng. 2010;34:1036–1040.
  • Kaur P, Singh SK, Garg V, et al. Optimization of spray drying process for formulation of solid dispersion containing polypeptide-k powder through quality by design approach. Powder Technol. 2015;284:1–11.
  • Guimarães TF, Lanchote AD, Da Costa JS, et al. A multivariate approach applied to quality on particle engineering of spray-dried mannitol. Adv Powder Technol. 2015;26:1094–1101.
  • Lebrun P, Krier F, Mantanus J, et al. Design space approach in the optimization of the spray-drying process. Eur J Pharm Biopharm. 2012;80:226–234.
  • Ali M, Mahmud T, Heggs PJ, et al. A one-dimensional plug-flow model of a counter-current spray drying tower. Chem Eng Res Des. 2014;92:826–841.
  • Pinto M, Kemp I, Bermingham S, et al. Development of an axisymmetric population balance model for spray drying and validation against experimental data and {CFD} simulations. Chem Eng Res Des. 2014;92:619–634.
  • Sandler N, Wilson D. Prediction of granule packing and flow behavior based on particle size and shape analysis. J Pharm Sci. 2010;99:958–968.
  • ICH. Q6A specifications: test procedures and acceptance criteria for new drug substance and new drug products: chemical substances. . 1999. Available from: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q6A/Step4/Q6Astep4.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.