486
Views
38
CrossRef citations to date
0
Altmetric
Review

Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays

, , &
Pages 1021-1037 | Received 16 Apr 2018, Accepted 27 Aug 2018, Published online: 27 Sep 2018

References

  • Gulati K, Aw MS, Findlay D, et al. Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Delivery. 2012;3(7):857–873.
  • Lu H, Liu Y, Guo J, et al. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci. 2016;17(3):334.
  • Gheno R, Cepparo JM, Rosca CE, et al. Musculoskeletal disorders in the elderly. J Clin Imaging Sci. 2012;2:39.
  • Binkowska AM, Michalak G, Słotwiński R. Current views on the mechanisms of immune responses to trauma and infection. Central-Eur J Immunol. 2015;40(2):206–216.
  • Wu S, Weng Z, Liu X, et al. Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater. 2014;24(35):5464–5481.
  • Maher S, Losic D. Nano-engineered titania nanotube arrays for localized drug delivery and enhanced osseointegration. In: Uskocovic V, editor. Nanotechnologies in preventive and regenerative medicine. Vol. 1. Ma, USA: Elsevier; 2017.
  • Trajkovski B, Petersen A, Strube P, et al. Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone. Adv Drug Deliv Rev. 2012;64(12):1142–1151.
  • Moran E, Byren I, Atkins BL. The diagnosis and management of prosthetic joint infections. J Antimicrob Chemother. 2010;65(suppl 3):45–54.
  • Gulati K, Maher S, Findlay DM, et al. Titania nanotubes for orchestrating osteogenesis at the bone–implant interface. Nanomedicine. 2016;11(14):1847–1864.
  • Hendriks JGE, van Horn JR, van der Mei HC, et al. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25(3):545–556.
  • Parvizi J, Saleh KJ, Ragland PS, et al. Efficacy of antibiotic‐impregnated cement in total hip replacement. Acta Orthop. 2008;79(3):335–341.
  • Manam NS, Harun WSW, Shri DNA, et al. Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd. 2017;701:698–715.
  • Yongsug T, Byoung-Gu L, Jaemin K, et al. Effect of surface treatment on surface roughness and Ni content of nitinol stents. Int J Surf Sci Eng. 2016;10(4):389–399.
  • Gulati K, Kogawa M, Maher S, et al. Titania nanotubes for local drug delivery from implant surfaces. In: Losic D. and Santos A., editors. Electrochemically engineered nanoporous materials. Switzerland: Springer International Publishing; 2015. p. 307–355.
  • Losic D, Aw MS, Santos A, et al. Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Delivery. 2015;12(1):103–127.
  • Hao C, Wei X, Zhong F, et al. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater. 2016;31:388–400.
  • Sanchez MC, Fernandez E, Llama-Palacios A, et al. Response to antiseptic agents of periodontal pathogens in in vitro biofilms on titanium and zirconium surfaces. Dent Mater. 2017;33(4):446–453.
  • Ionita D, Bajenaru-Georgescu D, Totea G, et al. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes. Int J Pharm. 2017;517(1):296–302.
  • Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39(7):1406–1447.
  • Hallab NJ, Vermes C, Messina C, et al. Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res. 2002;60(3):420–433.
  • Schmidmaier G, Wildemann B, Cromme F, et al. Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats. Bone. 2002;30(6):816–822.
  • Shirtliff ME, Calhoun JH, Mader JT. Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res. 2002;401:239–247.
  • Santos A, Sinn Aw M, Bariana M, et al. Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B. 2014;2(37):6157–6182.
  • Maher S, Kaur G, Lima-Marques L, et al. Engineering of micro- to nanostructured 3D-printed drug-releasing titanium implants for enhanced osseointegration and localized delivery of anticancer drugs. ACS Appl Mater Interfaces. 2017;9(35):29562–29570.
  • Wijeratne AB, Wijesundera DN, Paulose M, et al. Phosphopeptide separation using radially aligned titania nanotubes on titanium wire. ACS Appl Mater Interfaces. 2015;7(21):11155–11164.
  • Jayamohan H, Smith YR, Gale BK, et al. Photocatalytic microfluidic reactors utilizing titania nanotubes on titanium mesh for degradation of organic and biological contaminants. J Environ Chem Eng. 2016;4(1):657–663.
  • Leskelä M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed. 2003;42(45):5548–5554.
  • Kulkarni M, Mazare A, Gongadze E, et al. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26(6):062002.
  • Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed. 2011;50(13):2904–2939.
  • Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27(7):629–637.
  • Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed. 2005;44(14):2100–2102.
  • Paulose M, Prakasam HE, Varghese OK, et al. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C. 2007;111(41):14992–14997.
  • Allam NK, Grimes CA. Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C. 2007;111(35):13028–13032.
  • So S, Lee K, Schmuki P. Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. J Am Chem Soc. 2012;134(28):11316–11318.
  • So S, Riboni F, Hwang I, et al. The double-walled nature of TiO2 nanotubes and formation of tube-in-tube structures – a characterization of different tube morphologies. Electrochim Acta. 2017;231:721–731.
  • Elzarka A, Liu N, Hwang I, et al. Large-diameter TiO2 nanotubes enable wall engineering with conformal hierarchical decoration and blocking layers for enhanced efficiency in dye-sensitized solar cells (DSSC). Chemistry. 2017;23(53):12995–12999.
  • Ozkan S, Mazare A, Schmuki P. Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. Electrochim Acta. 2018;268:435–447.
  • Guillemot F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices. 2005;2(6):741–748.
  • Liang YQ, Cui ZD, Zhu SL, et al. Characterization of self-organized TiO2 nanotubes on Ti–4Zr–22Nb–2Sn alloys and the application in drug delivery system. J Mater Science Mater Med. 2011;22(3):461–467.
  • Xiong Y, Qian C, Sun J. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent Mater J. 2012;31(5):815–820.
  • Cheng A, Humayun A, Cohen DJ, et al. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014;6(4):045007.
  • Gulati K, Prideaux M, Kogawa M, et al. Anodized 3D–printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells. J Tissue Eng Regen Med. 2016;11(12):3313–3325.
  • Maher S, Qin J, Gulati K, et al. 3D printed titanium implants with nano-engineered surface titania nanotubes for localized drug delivery Chemeca 2016: Chemical Engineering - Regeneration, Recovery and Reinvention; Adelaide, SA, Australia: Engineers Australia; 2016. p. 65–76.
  • Peng W, Qiao Z, Zhang Q, et al. Micropatterned TiO2 nanotubes: fabrication, characterization and in vitro protein/cell responses. J Mater Chem B. 2013;1(28):3506–3512.
  • Civantos A, Martínez-Campos E, Ramos V, et al. Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng. 2017;3(7):1245–1261.
  • Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(Suppl 4):172–184.
  • Wang H, Lai Y-K, Zheng R-Y, et al. Tuning the surface microstructure of titanate coatings on titanium implants for enhancing bioactivity of implants. Int J Nanomedicine. 2015;10(1):3887—3896.
  • Kulkarni M, Flašker A, Lokar M, et al. Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine. 2015;10:1359–1373.
  • Kulkarni M, Mazare A, Park J, et al. Protein interactions with layers of TiO2 nanotube and nanopore arrays: morphology and surface charge influence. Acta Biomater. 2016;45:357–366.
  • Kunze J, Müller L, Macak JM, et al. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta. 2008;53(23):6995–7003.
  • Parcharoen Y, Kajitvichyanukul P, Sirivisoot S, et al. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications. Appl Surf Sci. 2014;311:54–61.
  • Moon B-S, Kim S, Kim H-E, et al. Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Mater Sci Eng C. 2017;73:90–98.
  • Han LY, Wang CS, Qiang JB. Microstructure and properties of Ti-Fe-Zr-Y alloys prepared by laser rapid prototyping. J Alloys Compd. 2017;700:159–168.
  • Liu H, Huang X, Yu H, et al. A cytocompatible micro/nano-textured surface with Si-doped titania mesoporous arrays fabricated by a one-step anodization. Mater Sci Eng C. 2017;73:120–129.
  • Lai Y, Lin L, Pan F, et al. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small. 2013;9(17):2945–2953.
  • Feschet-Chassot E, Raspal V, Sibaud Y, et al. Tunable functionality and toxicity studies of titanium dioxide nanotube layers. Thin Solid Films. 2011;519(8):2564–2568.
  • Yang Y, Ao H, Wang Y, et al. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Res. 2016;4:16027.
  • Popat KC, Leoni L, Grimes CA, et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28(21):3188–3197.
  • Bjursten LM, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res Part. 2010;92(3):1218–1224.
  • Mi B, Xiong W, Xu N, et al. Strontium-loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: in vitro and in vivo studies. Sci Rep. 2017;7(1):2328.
  • Cheng H, Xiong W, Fang Z, et al. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater. 2016;31:388–400.
  • Zhang Y, Luo R, Tan J, et al. Osteoblast behaviors on titania nanotube and mesopore layers. Regenerative Biomater. 2017;4(2):81–87.
  • Shivaram A, Bose S, Bandyopadhyay A. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J Mech Behav Biomed Mater. 2016;59:508–518.
  • Kyllonen L, D’Este M, Alini M, et al. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater. 2015;11:412–434.
  • Neacsu P, Mazare A, Cimpean A, et al. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int J Biochem Cell Biol. 2014;55:187–195.
  • Ainslie KM, Tao SL, Popat KC, et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res Part A. 2009;91A(3):647–655.
  • Smith BS, Capellato P, Kelley S, et al. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater Sci. 2013;1(3):322–332.
  • Aninwene GE, Yao C, Webster TJ. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces. Int J Nanomedicine. 2008;3(2):257–264.
  • Mandal SS, Jose D, Bhattacharyya AJ. Role of surface chemistry in modulating drug release kinetics in titania nanotubes. Mater Chem Phys. 2014;147(1–2):247–253.
  • Shokuhfar T, Sinha-Ray S, Sukotjo C, et al. Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Adv. 2013;3(38):17380–17386.
  • Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849–13880.
  • Rogers SS, van der Walle C, Waigh TA. Microrheology of bacterial biofilms in vitro: staphylococcus aureus and Pseudomonas aeruginosa. Langmuir. 2008;24(23):13549–13555.
  • Puckett SD, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31(4):706–713.
  • Wei C-K, Ding S-J. Dual-functional bone implants with antibacterial ability and osteogenic activity. J Mater Chem B. 2017;5(10):1943–1953.
  • Narendrakumar K, Kulkarni M, Addison O, et al. Adherence of oral streptococci to nanostructured titanium surfaces. Dent Mater. 2015;31(12):1460–1468.
  • Popat KC, Eltgroth M, LaTempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28(32):4880–4888.
  • Zhang H, Sun Y, Tian A, et al. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO(2)nanotubes: in vivo and in vitro studies. Int J Nanomedicine. 2013;8:4379–4389.
  • Böttcher T, Kolodkin-Gal I, Kolter R, et al. Synthesis and activity of biomimetic biofilm disruptors. J Am Chem Soc. 2013;135(8):2927–2930.
  • Yang Y, Ao H-Y, Yang S-B, et al. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int J Nanomedicine. 2016;11:2223—2234.
  • Zhang M, Wei M, Wang D, et al. Preparation and characterization of a drug vehicle: polymer brush immobilized Ag nanoparticles onto titanium nanotubes. Mater Lett. 2014;135:51–54.
  • Li G, Zhao Q-M, Yang H-L, et al. Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays. Mater Res. 2016;19:735–740.
  • Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985.
  • Huo K, Zhang X, Wang H, et al. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials. 2013;34(13):3467–3478.
  • Wang T, Liu X, Zhu Y, et al. Metal ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants. ACS Biomater Sci Eng. 2017;3(5):816–825.
  • Zizhou F, Xiangmei L, Lei T, et al. Electrophoretic deposited stable Chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small. 2018;14(21):1704347.
  • Lim SS, Chai CY, Loh H-S. In vitro evaluation of osteoblast adhesion, proliferation and differentiation on chitosan-TiO2 nanotubes scaffolds with Ca2+ ions. Mater Sci Eng, C. 2017;76:144–152.
  • Kumeria T, Mon H, Aw MS, et al. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf B. 2015;130:255–263.
  • Zhang F, Zhang Z, Zhu X, et al. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29(36):4751–4759.
  • Mazare A, Totea G, Burnei C, et al. Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corrosion Sci. 2016;103:215–222.
  • Bhadra CM, Truong VK, Pham VT, et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep. 2015;5:16817.
  • Lorenzetti M, Dogša I, Stošicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces. 2015;7(3):1644–1651.
  • Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292–1309.
  • Lai M, Cai K, Zhao L, et al. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12(4):1097–1105.
  • Cao X, Yu WQ, Qiu J, et al. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. J Mater Science Mater Med. 2012;23(2):527–536.
  • Sun S, Yu W, Zhang Y, et al. Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR. J Mater Science Mater Med. 2013;24(4):1079–1091.
  • Lee SJ, Oh TJ, Bae TS, et al. Effect of bisphosphonates on anodized and heat-treated titanium surfaces: an animal experimental study. J Periodontol. 2010;82(7):1035–1042.
  • Shen X, Ma P, Hu Y, et al. Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. J Mater Chem B. 2016;4(8):1423–1436.
  • Lee J-K, Choi D-S, Jang I, et al. Improved osseointegration of dental titanium implants by TiO(2) nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study. Int J Nanomed. 2015;10:1145–1154.
  • Bariana M, Dwivedi P, Ranjitkar S, et al. Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Colloids Surf B. 2017;150:59–67.
  • Chen X, Cai K, Fang J, et al. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids Surf B Biointerfaces. 2013;103:149–157.
  • Ozguclu E, Cetin A, Cetin M, et al. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: a randomized, placebo-controlled study. Clin Rheumatol. 2010;29(8):927–931.
  • Park J, Mazare A, Schneider H, et al. Electric field-induced osteogenic differentiation on TiO2 nanotubular layer. Tissue Eng Part C Methods. 2016;22(8):809–821.
  • Gulati K, Maher S, Chandrasekaran S, et al. Conversion of titania (TiO2) into conductive titanium (Ti) nanotube arrays for combined drug-delivery and electrical stimulation therapy. J Mater Chem B. 2016;4(3):371–375.
  • Wang T, Weng Z, Liu X, et al. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Mater. 2017;2(1):44–50.
  • Chen B, Lu K. Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir. 2012;28(5):2937–2943.
  • Li S, Zhang G, Guo D, et al. Anodization fabrication of highly ordered TiO2 nanotubes. J Phys Chem C. 2009;113(29):12759–12765.
  • Aw MS, Kurian M, Losic D. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci. 2014;2(1):10–34.
  • Song YY, Schmidt-Stein F, Bauer S, et al. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc. 2009;131(12):4230–4232.
  • Gulati K, Ramakrishnan S, Aw MS, et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 2012;8(1):449–456.
  • Xu J, Zhou X, Gao Z, et al. Visible-light-triggered drug release from TiO2 nanotube arrays: a controllable antibacterial platform. Angew Chem Int Ed Engl. 2016;55(2):593–597.
  • Sirivisoot S, Pareta RA, Webster TJ. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J Biomed Mater Res Part A. 2011;99A(4):586–597.
  • Zhou J, Frank MA, Yang Y, et al. A novel local drug delivery system: superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Mater Sci Eng C. 2018;82:277–283.
  • Mohajernia S, Mazare A, Gongadze E, et al. Self-organized, free-standing TiO2 nanotube membranes: effect of surface electrokinetic properties on flow-through membranes. Electrochim Acta. 2017;245:25–31.
  • Tsimbouri PM, Fisher L, Holloway N, et al. Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates. Sci Rep. 2016;6:36857.
  • Brohede U, Forsgren J, Roos S, et al. Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Science Mater Med. 2009;20(9):1859–1867.
  • Piszczek P, Muchewicz Ż, Radtke A, et al. CVD of TiO2 and TiO2/Ag antimicrobial layers: deposition from the hexanuclear μ-oxo Ti(IV) complex as a precursor, and the characterization. Surface and Coatings Technology. 2013;222:38–43.
  • Zahran R, Rosales Leal JI, Rodríguez Valverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion. PLoS One. 2016;11(11):e0165296.
  • Zhang X, Wang H, Li J, et al. The fabrication of Ag-containing hierarchical micro/nano-structure on titanium and its antibacterial activity. Mater Lett. 2017;193:97–100.
  • Rajesh P, Mohan N, Yokogawa Y, et al. Pulsed laser deposition of hydroxyapatite on nanostructured titanium towards drug eluting implants. Mater Sci Eng C. 2013;33(5):2899–2904.
  • Hassanin H, Finet L, Cox SC, et al. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Additive Manufacturing. 2018;20:144–155.
  • Abdal-Hay A, Hamdy AS, Khalil KA, et al. A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants. Mater Sci Eng C. 2015;49:681–690.
  • Smeets R, Stadlinger B, Schwarz F, et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016;2016:16.
  • Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L, et al. In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater. 2009;5(1):181–192.
  • Barbour ME, O’Sullivan DJ, Jenkinson HF, et al. The effects of polishing methods on surface morphology, roughness and bacterial colonisation of titanium abutments. J Mater Sci Mater Med. 2007;18(7):1439–1447.
  • Al-Radha ASD, Dymock D, Younes C, et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent. 2012;40(2):146–153.
  • Bonfante EA, Granato R, Marin C, et al. Biomechanical testing of microblasted, acid-etched/microblasted, anodized, and discrete crystalline deposition surfaces: an experimental study in beagle dogs. Int J Oral Maxillofac Implants. 2013;28:1.
  • Radin S, Ducheyne P. Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials. 2007;28(9):1721–1729.
  • Liu Z, Zhu Y, Liu X, et al. Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids Surf B Biointerfaces. 2017;151:165–177.
  • Roy M, Fielding GA, Beyenal H, et al. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces. 2012;4(3):1341–1349.
  • Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321–330.
  • Le Guehennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–854.
  • Jain P, Mandal T, Prakash P, et al. Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO 2 substrate. J Coatings Technol Res. 2013;10(2):263–275.
  • Patel KD, Singh RK, Lee E-J, et al. Tailoring solubility and drug release from electrophoretic deposited chitosan–gelatin films on titanium. Surf Coatings Technol. 2014;242:232–236.
  • Liu X, Tian A, You J, et al. Antibacterial abilities and biocompatibilities of Ti–ag alloys with nanotubular coatings. Int J Nanomed. 2016;11:5743.
  • Martínez Campos E, Santos-Coquillat A, Mingo B, et al. Albumin loaded PEO coatings on Ti — potential as drug eluting systems. Surf Coatings Technol. 2015;283:44–51.
  • Marin E, Diamanti MV, Boffelli M, et al. Effect of etching on the composition and structure of anodic spark deposition films on titanium. Mater Des. 2016;108:77–85.
  • Geissler S, Tiainen H, Haugen HJ. Effect of cathodic polarization on coating doxycycline on titanium surfaces. Mater Sci Eng C Mater Biol Appl. 2016;63:359–366.
  • Bariana M, Aw MS, Moore E, et al. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomedicine. 2013;9(8):1263–1275.
  • Xiang Y, Liu X, Mao C, et al. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mater Sci Eng C. 2018;85:214–224.
  • Jia H, Kerr LL. Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite—pH dependent study. J Appl Polym Sci. 2015;132:7.
  • Moon K-S, Bae J-M, Jin S, et al. Infrared-mediated drug elution activity of gold nanorod-grafted TiO2 nanotubes. J Nanomater. 2014;2014:8.
  • Aw MS, Addai-Mensah J, Losic D. Magnetic-responsive delivery of drug-carriers using titania nanotube arrays. J Mater Chem. 2012;22(14):6561–6563.
  • Song YY, Roy P, Paramasivam I, et al. Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. Angew Chem Int Ed Engl. 2010;49(2):351–354.
  • Gulati K, Kant K, Findlay D, et al. Periodically tailored titania nanotubes for enhanced drug loading and releasing performances. J Mater Chem B. 2015;3(12):2553–2559.
  • Vasilev K, Poh Z, Kant K, et al. Tailoring the surface functionalities of titania nanotube arrays. Biomaterials. 2010;31(3):532–540.
  • Aw MS, Addai-Mensah J, Losic D. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun (Camb). 2012;48(27):3348–3350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.