582
Views
20
CrossRef citations to date
0
Altmetric
Review

Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy

, &
Pages 757-772 | Received 01 Apr 2019, Accepted 04 Jul 2019, Published online: 17 Jul 2019

References

  • Mangal S, Gao W, Li T, et al. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38(6):782–797.
  • Cheng T-YD, Cramb SM, Baade PD, et al. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J Thorac Oncol. 2016 oct 01;11(10):1653–1671.
  • Abdelaziz HM, Gaber M, Abd-Elwakil MM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018 Jan;10(269):374–392.
  • Didkowska J, Wojciechowska U, Manczuk M, et al. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med. 2016 4;Apr(8):150.
  • Sundaram S, Trivedi R, Durairaj C, et al. Targeted drug and gene delivery systems for lung cancer therapy. clin cancer res off j am assoc cancer res. 2009 Dec 1;15(23):7299–7308.
  • Goncalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017 Jul-Sep;15(3):369–375.
  • Hong SH, Park SJ, Lee S, et al. Aerosol gene delivery using viral vectors and cationic carriers for in vivo lung cancer therapy. Expert Opin Drug Deliv. 2015 Jun;12(6):977–991.
  • Lara-Guerra H, Roth JA. Gene therapy for lung cancer. Crit Rev Oncog. 2016;21(1–2):115–124.
  • Osman N, Kaneko K, Carini V, et al. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv. 2018 Aug;15(8):821–834.
  • Zhang B, Zhang Y, Yu D. Lung cancer gene therapy: transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery. Oncol Rep. 2017 Feb;37(2):937–944.
  • Kim N, Duncan GA, Hanes J, et al. Barriers to inhaled gene therapy of obstructive lung diseases: a review. J Control Release. 2016 Oct;28(240):465–488.
  • Zarogouldis P, Karamanos NK, Porpodis K, et al. Vectors for inhaled gene therapy in lung cancer. Int J Mol Sci. 2012;13(9):10828–10862.
  • Alapati D, Morrisey EE. Gene editing and genetic lung disease. Basic research meets therapeutic application. Am J Respir Cell Mol Biol. 2017 Mar;56(3):283–290.
  • Castillo A. Gene editing using CRISPR-Cas9 for the treatment of lung cancer. Colomb Med (Cali). 2016 Dec 30;47(4):178–180.
  • Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018 May;20(5):e3015.
  • Chen C, Yue D, Lei L, et al. Promoter-operating targeted expression of gene therapy in cancer: current stage and prospect. Mol Ther Nucleic Acids. 2018 June 01;11:508–514.
  • Shao Z, Shao J, Tan B, et al. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine. 2015;10:1223–1233.
  • Lindsay-Mosher N, Su C. Cancer gene therapy: innovations in therapeutic delivery of CRISPR-Cas9. Drug Discov Today Dis Models. 2016 sep 01;21:17–21.
  • Wang L, Zheng W, Liu S, et al. Delivery of CRISPR/Cas9 by novel strategies for gene therapy. Chembiochem Eur J Chem Biol. 2019 Mar 1;20(5):634–643.
  • Liu C, Zhang L, Liu H, et al. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017 Nov 28;266:17–26.
  • Amreddy N, Babu A, Muralidharan R, et al. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Top Curr Chem (Cham). 2017 Apr;375(2):35.
  • Lee HY, Mohammed KA, Nasreen N. Nanoparticle-based targeted gene therapy for lung cancer. Am J Cancer Res. 2016;6(5):1118–1134.
  • Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015 Dec;10(219):500–518.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014 Aug;75:81–91.
  • Agu RU, Ugwoke MI, Armand M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198–209.
  • Mangal S, Gao W, Li T, et al. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017 Jun;38(6):782–797.
  • Feingold KR. Lamellar bodies: the key to cutaneous barrier function. J Invest Dermatol. 2012 Aug;132(8):1951–1953.
  • Mottais A, Le Gall T, Sibiril Y, et al. Enhancement of lung gene delivery after aerosol: a new strategy using non-viral complexes with antibacterial properties. Biosci Rep. 2017 Dec 22;37:6.
  • Youngren-Ortiz SR, Gandhi NS, Espana-Serrano L, et al. Aerosol delivery of siRNA to the lungs. Part 1: rationale for gene delivery systems. Kona. 2016 Feb;28(33):63–85.
  • Yan Y, Zhou K, Xiong H, et al. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials. 2017;118:84–93.
  • Agu RU, Ugwoke MI. In vitro and in vivo testing methods for respiratory drug delivery. Expert Opin Drug Deliv. 2011 Jan;8(1):57–69.
  • Dugernier J, Ehrmann S, Sottiaux T, et al. Aerosol delivery during invasive mechanical ventilation: a systematic review. Crit Care. 2017 Oct 21;21(1):264.
  • Lukashev AN, Zamyatnin AA Jr. Viral vectors for gene therapy: current state and clinical perspectives. Biochem Biokhimiia. 2016 Jul;81(7):700–708.
  • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy – an overview. J clin diagn res. 2015;9(1):GE01–GE6.
  • Xing H, Lu M, Yang T, et al. Structure-function relationships of nonviral gene vectors: lessons from antimicrobial polymers. Acta Biomater. 2019 Mar;1(86):15–40.
  • Junquera E, Aicart E. Cationic lipids as transfecting agents of DNA in gene therapy. Curr Top Med Chem. 2014 Mar;14(5):649–663.
  • Alipour S, Montaseri H, Tafaghodi M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B Biointerfaces. 2010 Dec 1;81(2):521–529.
  • Kolte A, Patil S, Lesimple P, et al. PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm. 2017 May 30;524(1–2):382–396.
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003 Feb 24;55(3):329–347.
  • Walter E, Dreher D, Kok M, et al. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Control Release. 2001 Sep 11;76(1–2):149–168.
  • Wusiman A, Xu S, Ni H, et al. Immunomodulatory effects of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Carbohydr Polym. 2019 May;1(211):217–226.
  • Barillet S, Fattal E, Mura S, et al. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology. 2019;14:1–17.
  • Okuda T, Morishita M, Mizutani K, et al. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J Control Release. 2018 Jun;10(279):99–113.
  • Nascimento AV, Singh A, Bousbaa H, et al. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater. 2017 Jan 1;47:71–80.
  • Zhou Z, Zhang M, Liu Y, et al. Reversible covalent cross-linked polycations with enhanced stability and ATP-Responsive behavior for improved siRNA delivery. Biomacromolecules. 2018 Sep 10;19(9):3776–3787.
  • Dalle Vedove E, Costabile G, Merkel OM. Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy. Adv Healthc Mater. 2018. 7. Jul(14):e1701398.
  • Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016 Nov;21(11):1835–1849.
  • Osman G, Rodriguez J, Chan SY, et al. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release. 2018 Sep;10(285):35–45.
  • Luo CQ, Jang Y, Xing L, et al. Aerosol delivery of folate-decorated hyperbranched polyspermine complexes to suppress lung tumorigenesis via Akt signaling pathway. Int J Pharm. 2016 Nov 20;513(1–2):591–601.
  • Hong SH, Chang SH, Cho KC, et al. Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy. Oncotarget. 2016 Oct 4;7(40):65335–65347.
  • Cho WY, Hong SH, Singh B, et al. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA. Eur J Pharm Biopharm. 2015;94:450–462.
  • Minai-Tehrani A, Jiang HL, Kim YK, et al. Suppression of tumor growth in xenograft model mice by small interfering RNA targeting osteopontin delivery using biocompatible poly(amino ester). Int J Pharm. 2012 Jul 15;431(1–2):197–203.
  • Hong SH, Lee JH, Jiang HL, et al. Dual expression of shAkt1 and Pdcd4 suppresses lung tumorigenesis in K-rasLA1 mice. Anticancer Res. 2015 Apr;35(4):2015–2019.
  • Gankhuyag N, Yu KN, Davaadamdin O, et al. Suppression of tobacco carcinogen-induced lung tumorigenesis by aerosol-delivered glycerol propoxylate triacrylate-spermine copolymer/short hairpin Rab25 RNA complexes in female A/J mice. J Aerosol Med Pulm Drug Deliv. 2017 Apr;30(2):81–90.
  • Kuscu L, Sezer AD. Future prospects for gene delivery systems. Expert Opin Drug Deliv. 2017 Oct;14(10):1205–1215.
  • Rudokas M, Najlah M, Alhnan MA, et al. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 2016;25(Suppl 2):60–72.
  • Wu Y, Crawford M, Yu B, et al. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm. 2011 1;8(4):1381–1389. Aug.
  • Kawakami S, Suzuki S, Yamashita F, et al. Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes. J Control Release. 2006 Feb 21;110(3):514–521.
  • Zhao Y, Zhu J, Zhou H, et al. Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery. Colloids Surf B Biointerfaces. 2016 Sep;1(145):454–461.
  • Zhang D, Wang J, Xu D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release. 2016 May;10(229):130–139.
  • Tagalakis AD, Maeshima R, Yu-Wai-Man C, et al. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomater. 2017 Mar;15(51):351–362.
  • Tesauro D, Accardo A, Diaferia C, et al. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules. 2019 Jan 19;24(2):351.
  • Yonenaga N, Kenjo E, Asai T, et al. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment. J Control Release. 2012 Jun 10;160(2):177–181.
  • Ishiguro S, Alhakamy NA, Uppalapati D, et al. Combined local pulmonary and systemic delivery of AT2R gene by modified TAT peptide nanoparticles attenuates both murine and human lung carcinoma xenografts in mice. J Pharm Sci. 2017 Jan;106(1):385–394.
  • Luther DC, Lee YW, Nagaraj H, et al. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv. 2018 Sep;15(9):905–913.
  • Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019 Feb;566(7745):440–442.
  • Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016 Nov 24;539(7630):479.
  • Kim W, Lee S, Kim HS, et al. Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth. Genome res. 2018 Jan11;28(3):374–382.
  • Lee W, Lee JH, Jun S, et al. Selective targeting of KRAS oncogenic alleles by CRISPR/Cas9 inhibits proliferation of cancer cells. Sci Rep. 2018 8;8;Aug(1):11879.
  • Vojnic M, Kubota D, Kurzatkowski C, et al. Acquired BRAF rearrangements induce secondary resistance to EGFR therapy in EGFR-mutated lung cancers. J Thorac Oncol. 2019 May;14(5):802–815.
  • Vad-Nielsen J, Gammelgaard KR, Daugaard TF, et al. Cause-and-effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells. Lung Cancer. 2019;132:132–140.
  • Singh S, Trevino J, Bora-Singhal N, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer [journal article]. Mol Cancer. 2012 September 25;11(1):73.
  • Tang H, Shrager JB. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO Mol Med. 2016 Feb 1;8(2):83–85.
  • Koo T, Yoon AR, Cho HY, et al. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res. 2017 Jul 27;45(13):7897–7908.
  • Zhang J, Zhou W, Wang X, et al. The CRISPR-Cas9 system: a promising tool for discovering potential approaches to overcome drug resistance in cancer. RSC Adv. 2018;8(58):33464–33472.
  • Chen X, Sun X, Guan J, et al. Rsf-1 influences the sensitivity of non-small cell lung cancer to paclitaxel by regulating NF-kappaB pathway and its downstream proteins. Cell Physiol Biochem. 2017;44(6):2322–2336.
  • Zhang H, Bahamondez-Canas TF, Zhang Y, et al. PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. Mol Pharm. 2018 Nov 5;15(11):4814–4826.
  • Biagioni A, Laurenzana A, Margheri F, et al. Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng. 2018;12:33.
  • He ZY, Men K, Qin Z, et al. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Sci China Life sci. 2017 May;60(5):458–467.
  • Wang M, Glass ZA, Xu Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther. 2017 Mar;24(3):144–150.
  • Moreno AM, Fu X, Zhu J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol ther. 2018 Jul 5;26(7):1818–1827.
  • Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res. 2017;6:2153.
  • Fakhiri J, Nickl M, Grimm D. Rapid and simple screening of CRISPR guide RNAs (gRNAs) in cultured cells using adeno-associated viral (AAV) vectors. Methods Mol Biol. 2019;1961:111–126.
  • Lino CA, Harper JC, Carney JP, et al. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018 Nov;25(1):1234–1257.
  • Xiao Q, Min T, Ma S, et al. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Mol Genet Genomics. 2018 Aug;293(4):1051–1060.
  • Li L, He ZY, Wei XW, et al. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015 Jul;26(7):452–462.
  • Rui Y, Wilson DR, Green JJ. Non-viral delivery to enable genome editing. Trends Biotechnol. 2019 Mar;37(3):281–293.
  • Ryu N, Kim MA, Park D, et al. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomed. 2018 Oct;14(7):2095–2102.
  • Sachdeva M, Sachdeva N, Pal M, et al. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther. 2015 Nov;22(11):509–517.
  • Liu J, Shui SL. Delivery methods for site-specific nucleases: achieving the full potential of therapeutic gene editing. J Control Release. 2016 Dec 28;244(Pt A):83–97.
  • Fukazawa T, Maeda Y, Sladek FM, et al. Development of a cancer-targeted tissue-specific promoter system. Cancer Res. 2004 Jan 1;64(1):363–369.
  • Papadakis ED, Nicklin SA, Baker AH, et al. Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther. 2004 Mar;4(1):89–113.
  • Leao R, Apolonio JD, Lee D, et al. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. 2018 Mar 12;25(1):22.
  • Fukazawa T, Maeda Y, Durbin ML, et al. Pulmonary adenocarcinoma-targeted gene therapy by a cancer- and tissue-specific promoter system. Mol Cancer Ther. 2007 Jan;6(1):244–252.
  • Chao CN, Lin MC, Fang CY, et al. Gene therapy for human lung adenocarcinoma using a suicide gene driven by a lung-specific promoter delivered by JC virus-like particles. PLoS One. 2016;11(6):e0157865.
  • Powell SK, Rivera-Soto R, Gray SJ. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med. 2015 Jan;19(102):49–57.
  • Swisher SG, Roth JA. p53 Gene therapy for lung cancer. Curr Oncol Rep. 2002 Jul;4(4):334–340.
  • Garg H, Salcedo R, Trinchieri G, et al. Improved nonviral cancer suicide gene therapy using survivin promoter-driven mutant Bax. Cancer Gene Ther. 2010 Mar;17(3):155–163.
  • Aneja MK, Geiger JP, Himmel A, et al. Targeted gene delivery to the lung. Expert Opin Drug Deliv. 2009 6;Jun(6):567–583.
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921–3935.
  • Ayatollahi S, Salmasi Z, Hashemi M, et al. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int J Biochem Cell Biol. 2017;92:210–217.
  • Talekar M, Trivedi M, Shah P, et al. Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles. Mol ther. 2016 Apr;24(4):759–769.
  • Zhang M, Kim YK, Cui P, et al. Folate-conjugated polyspermine for lung cancer-targeted gene therapy. Acta Pharm Sin B. 2016 Jul;6(4):336–343.
  • Debien E, Hervouet E, Gautier F, et al. ABT-737 and/or folate reverse the PDGF-induced alterations in the mitochondrial apoptotic pathway in low-grade glioma patients. Clin Epigenetics. 2011;2(2):369–381. 05/15, 02/24/received, 04/10/accepted.
  • Orellana EA, Tenneti S, Rangasamy L, et al. FolamiRs: ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Sci Transl Med. 2017 Aug 2;9:401.
  • Muralidharan R, Babu A, Amreddy N, et al. Tumor-targeted nanoparticle delivery of HuR siRNA inhibits lung tumor growth in vitro and in vivo by disrupting the oncogenic activity of the RNA-binding protein HuR. Mol Cancer Ther. 2017 Aug;16(8):1470–1486.
  • Jiang H, Rivera-Molina Y, Gomez-Manzano C, et al. Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res. 2017 Jul 15;77(14):3894–3907.
  • Ganesh S, Iyer AK, Gattacceca F, et al. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Control Release. 2013 Dec 28;172(3):699–706.
  • Leung EL, Fiscus RR, Tung JW, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 2010 Nov 19;5(11):e14062.
  • Hao Y, Gao Y, Wu Y, et al. The AIB1siRNA-loaded hyaluronic acid-assembled PEI/heparin/Ca2+ nanocomplex as a novel therapeutic strategy in lung cancer treatment. Int J Mol Med. 2019 Feb;43(2):861–867.
  • Ganesh S, Iyer AK, Weiler J, et al. Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol Ther Nucleic Acids. 2013 Jul;30(2):e110.
  • Jin M, Jin G, Kang L, et al. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomedicine. 2018;13:2405–2426.
  • Lv T, Li Z, Xu L, et al. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater. 2018;76:257–274.
  • Yan Y, Liu L, Xiong H, et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):E5702–10.
  • Xin Y, Huang M, Guo WW, et al. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017 Jul 28;16(1):134.
  • LaRocca CJ, Warner SG. Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials. Clin Transl Med. 2018 Nov 14;7(1):35.
  • Ren J, Liu X, Fang C, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 Inhibition. clin cancer res off j am assoc cancer res. 2017 May 1;23(9):2255–2266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.