219
Views
11
CrossRef citations to date
0
Altmetric
Review

Development of nano-carriers for Leishmania vaccine delivery

, &
Pages 167-187 | Received 04 Sep 2019, Accepted 07 Jan 2020, Published online: 14 Jan 2020

References

  • Iborra S, Solana JC, Requena JM, et al. Vaccine candidates against Leishmania under current research. Expert Rev Vaccines. 2018;17(4):323–334.
  • Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine. 2012;30(26):3834–3842.
  • von Stebut E, Tenzer S. Cutaneous leishmaniasis: distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol. 2018;308(1):206–214.
  • Volpedo G, Costa L, Ryan N, et al. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venomous Anim Toxins Incl Trop Dis. 2019;25:e144118.
  • Vijayakumar S, Das P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop. 2018;181:95–104.
  • Khamesipour A, Rafati S, Davoudi N, et al. Leishmaniasis vaccine candidates for development: a global overview. Indian J Med Res. 2006;123(3):423.
  • Mahmoodi M, Khamesipour A, Dowlati Y, et al. Immune response measured in human volunteers vaccinated with autoclaved Leishmania major vaccine mixed with low dose of BCG. Clin Exp Immunol. 2003;134(2):303–308.
  • Modabber F. Leishmaniasis vaccines: past, present and future. Int J Antimicrob Agents. 2010;36:S58–S61.
  • Noazin S, Modabber F, Khamesipour A, et al. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine. 2008 Dec 9;26(52):6759–6767.
  • Noazin S, Khamesipour A, Moulton LH, et al. Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine. 2009 Jul 30;27(35):4747–4753.
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu Rev Immunol. 2000;18(1):927–974.
  • Moreno E, Schwartz J, Calvo A, et al. Skin vaccination using microneedles coated with a plasmid DNA cocktail encoding nucleosomal histones of Leishmania spp. Int J Pharm. 2017;533(1):236–244.
  • Coler RN, Reed SG. Second-generation vaccines against leishmaniasis. Trends Parasitol. 2005;21(5):244–249.
  • Gillespie PM, Beaumier CM, Strych U, et al. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992–2995.
  • Belshe R, Lee M-S, Walker RE, et al. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines. 2004;3(6):643–654.
  • Skeiky YA, Coler RN, Brannon M, et al. Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL® adjuvant. Vaccine. 2002;20(27–28):3292–3303.
  • O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines. 2003;2(2):269–283.
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597.
  • Khalil E, Hassan A, Zijlstra E, et al. Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet. 2000;356(9241):1565–1569.
  • Satti IN, Osman HY, Daifalla N, et al. Immunogenicity and safety of autoclaved Leishmania major plus BCG vaccine in healthy Sudanese volunteers. Vaccine. 2001;19(15–16):2100–2106.
  • Bhowmick S, Ali N. Recent developments in leishmaniasis vaccine delivery systems. Expert Opin Drug Deliv. 2008;5(7):789–803.
  • Higgins SC, Mills KH. TLR, NLR agonists, and other immune modulators as infectious disease vaccine adjuvants. Curr Infect Dis Rep. 2010;12(1):4–12.
  • Badiee A, Shargh VH, Khamesipour A, et al. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends. Vaccine. 2013;31(5):735–749.
  • Campos-Neto A. Anti-leishmania vaccine. Leishmania: Springer; 2002. p. 169–190.
  • Vajdy M, Srivastava I, Polo J, et al. Mucosal adjuvants and delivery systems for protein‐, DNA‐and RNA‐based vaccines. Immunol Cell Biol. 2004;82(6):617–627.
  • Starita C, Gavazza A, Lubas G. Hematological, biochemical, and serological findings in healthy canine blood donors after the administration of CaniLeish® vaccine. Vet Med Int. 2016;2016:4601893.
  • Teixeira MCA, Oliveira GGDS, Santos POM, et al. An experimental protocol for the establishment of dogs with long-term cellular immune reactions to Leishmania antigens. Memórias Inst Oswaldo Cruz. 2011;106(2):182–189.
  • Moafi M, Rezvan H, Sherkat R, et al. Leishmania vaccines entered in clinical trials: A review of literature. Int J Prev Med. 2019;10(1):95.
  • Daneshvar H, Namazi MJ, Kamiabi H, et al. Gentamicin-attenuated Leishmania infantum vaccine: protection of dogs against canine visceral leishmaniosis in endemic area of southeast of Iran. PLoS Negl Trop Dis. 2014;8(4):e2757.
  • De Luca PM, Macedo ABB. Cutaneous leishmaniasis vaccination: a matter of quality. Front Immunol. 2016;7:151.
  • Christiaansen AF, Dixit UG, Coler RN, et al. CD11a and CD49d enhance the detection of antigen-specific T cells following human vaccination. Vaccine. 2017;35(33):4255–4261.
  • Regina-Silva S, Feres AMLT, França-Silva JC, et al. Field randomized trial to evaluate the efficacy of the Leish-Tec® vaccine against canine visceral leishmaniasis in an endemic area of Brazil. Vaccine. 2016;34(19):2233–2239.
  • Osman M, Mistry A, Keding A, et al. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: first-in-human trial of ChAd63-KH. PLoS Negl Trop Dis. 2017;11(5):e0005527.
  • Storni T, Kündig TM, Senti G, et al. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev. 2005;57(3):333–355.
  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, et al. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13(1):106–112.
  • Johansen P, Storni T, Rettig L, et al. Antigen kinetics determines immune reactivity. Proc Nat Acad Sci. 2008;105(13):5189–5194.
  • Heegaard PM, Dedieu L, Johnson N, et al. Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol. 2011;156(2):183–202.
  • Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. Int J Pharm. 2008;364(2):265–271.
  • Jain S, Yap WT, Irvine DJ. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells. Biomacromolecules. 2005;6(5):2590–2600.
  • Shen Z, Reznikoff G, Dranoff G, et al. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol. 1997;158(6):2723–2730.
  • Sharp FA, Ruane D, Claass B, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Nat Acad Sci. 2009;106(3):870–875.
  • Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines. 2007;6(5):797–808.
  • Sharma S, Mukkur T, Benson HA, et al. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci. 2009;98(3):812–843.
  • Benne N, van Duijn J, Kuiper J, et al. Orchestrating immune responses: how size, shape and rigidity affect the immunogenicity of particulate vaccines. J Control Release. 2016;234:124–134.
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–1413.
  • Shima F, Uto T, Akagi T, et al. Size effect of amphiphilic poly (γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo. Acta Biomater. 2013;9(11):8894–8901.
  • Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. Aaps J. 2013;15(1):85–94.
  • Blank F, Stumbles PA, Seydoux E, et al. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol. 2013;49(1):67–77.
  • Huang X, Li L, Liu T, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–5399.
  • Kumar S, Anselmo AC, Banerjee A, et al. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220:141–148.
  • Yasuda T, Dancey GF, Kinsky SC. Immunogenicity of liposomal model membranes in mice: dependence on phospholipid composition. Proc Nat Acad Sci. 1977;74(3):1234–1236.
  • Bandyopadhyay A, Fine RL, Demento S, et al. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials. 2011;32(11):3094–3105.
  • Zaks K, Jordan M, Guth A, et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol. 2006;176(12):7335–7345.
  • Espuelas S, Irache J, Gamazo C. Synthetic particulate antigen delivery systems for vaccination. Immunologia. 2005;24(2):208–223.
  • Mant A, Chinnery F, Elliott T, et al. The pathway of cross‐presentation is influenced by the particle size of phagocytosed antigen. Immunology. 2012;136(2):163–175.
  • Mathaes R, Winter G, Siahaan TJ, et al. Influence of particle size, an elongated particle geometry, and adjuvants on dendritic cell activation. Eur J Pharm Biopharm. 2015;94:542–549.
  • Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–3938.
  • Thiele L, Rothen-Rutishauser B, Jilek S, et al. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release. 2001;76(1–2):59–71.
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Nat Acad Sci. 2006;103(13):4930–4934.
  • Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24(3):438–449.
  • Christensen D, Agger EM, Andreasen LV, et al. Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res. 2009;19(1):2–11.
  • Chadwick S, Kriegel C, Amiji M. Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther. 2009;9(4):427–440.
  • Gupta PK, Hung C-T. Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. J Microencapsul. 1990;7(1):85–94.
  • Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine. 2012;30(13):2256–2272.
  • Askarizadeh A, Jaafari MR, Khamesipour A, et al. Liposomal adjuvant development for leishmaniasis vaccines. Ther Adv Vaccines. 2017;5(4–5):85–101.
  • McKee AS, Marrack P. Old and new adjuvants. Curr Opin Immunol. 2017;47:44–51.
  • Ratnapriya S, Sahasrabuddhe AA, Dube A. Visceral leishmaniasis: an overview of vaccine adjuvants and their applications. Vaccine. 2019;37(27):3505–3519.
  • Principi N, Esposito S. Aluminum in vaccines: does it create a safety problem? Vaccine. 2018;36(39):5825–5831.
  • Shardlow E, Mold M, Exley C. Unraveling the enigma: elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. Allergy Asthma Clin Immunol. 2018;14(1):80.
  • Khoomrung S, Nookaew I, Sen P, et al. Metabolic profiling and compound-class identification reveal alterations in serum triglyceride levels in mice immunized with human vaccine adjuvant Alum. J Proteome Res. 2019;19(1):269–278.
  • Raman VS, Reed SG, Duthie MS, et al. Adjuvants for Leishmania vaccines: from models to clinical application. Front Immunol. 2012;3:144.
  • Soudi S, Hosseini AZ, Hashemi S. Co‐administration of rectal BCG and autoclaved Leishmania major induce protection in susceptible Balb/c mice. Parasite Immunol. 2011;33(10):561–571.
  • Okwor I, Uzonna J. Vaccines and vaccination strategies against human cutaneous leishmaniasis. Hum Vaccines. 2009;5(5):291–301.
  • Nagill R, Kaur S. Vaccine candidates for leishmaniasis: a review. Int Immunopharmacol. 2011;11(10):1464–1488.
  • Tewary P, Jain M, Sahani MH, et al. A heterologous prime-boost vaccination regimen using ORFF DNA and recombinant ORFF protein confers protective immunity against experimental visceral leishmaniasis. J Infect Dis. 2005;191(12):2130–2137.
  • Mutiso JM, Macharia JC, Gicheru MM. A review of adjuvants for Leishmania vaccine candidates. J Biomed Res. 2010;24(1):16–25.
  • Campos-Neto A, Porrozzi R, Greeson K, et al. Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infect Immun. 2001;69(6):4103–4108.
  • Poot J, Janssen L, van Kasteren-westerneng T, et al. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants. Vaccine. 2009;27(33):4439–4446.
  • Tonui WK, Mejia JS, Hochberg L, et al. Immunization with Leishmania major exogenous antigens protects susceptible BALB/c mice against challenge infection with L major. Infect Immun. 2004;72(10):5654–5661.
  • Nateghi Rostami M, Keshavarz H, Khamesipour A. Immune response of BALB/c mice against an experimental vaccine of Alum precipitated autoclaved Leishmania major (Alum-ALM) mixed with BCG or Mycobacterium vaccae. Trop Biomed. 2010;27(1):89–102.
  • Bozorgomid A, Hajipirloo HM, Tappeh KH, et al. Evaluation of the alum–naloxone adjuvant activity against experimental murine leishmaniasis due to L major. J Parasitic Dis. 2016;40(4):1141–1145.
  • Thakur A, Kaur H, Kaur S. Evaluation of the immunogenicity and protective efficacy of Killed Leishmania donovani antigen along with different adjuvants against experimental visceral leishmaniasis. Med Microbiol Immunol. 2015;204(4):539–550.
  • Almeida APM, Machado LF, Doro D, et al. New vaccine formulations containing a modified version of the amastigote 2 antigen and the non-virulent Trypanosoma cruzi CL-14 strain are highly antigenic and protective against Leishmania infantum challenge. Front Immunol. 2018;9:465.
  • Kamil A, Khalil E, Musa A, et al. Alum-precipitated autoclaved Leishmania major plus bacille Calmette-Guerin, a candidate vaccine for visceral leishmaniasis: safety, skin-delayed type hypersensitivity response and dose finding in healthy volunteers. Trans R Soc Trop Med Hyg. 2003;97(3):365–368.
  • Musa AM, Khalil EAG, Mahgoub FAE, et al. Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans R Soc Trop Med Hyg. 2008;102(1):58–63.
  • Wang S, Liu X, Fisher K, et al. Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium-or aluminum phosphate. Vaccine. 2000;18(13):1227–1235.
  • Fischer L, Minke J, Dufay N, et al. Rabies DNA vaccine in the horse: strategies to improve serological responses. Vaccine. 2003;21(31):4593–4596.
  • Rosado-Vallado M, Mut-Martin M, Del Rosario García-Miss M, et al. Aluminium phosphate potentiates the efficacy of DNA vaccines against Leishmaniamexicana. Vaccine. 2005;23(46–47):5372–5379.
  • Kshirsagar N, Pandya S, Kirodian B, et al. Liposomal drug delivery system from laboratory to clinic. J Postgrad Med. 2005;51(5):5.
  • Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2(6):159–182.
  • Rao M, Alving CR. Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. Adv Drug Deliv Rev. 2000;41(2):171–188.
  • Portuondo DLF, Ferreira LS, Urbaczek AC, et al. Adjuvants and delivery systems for antifungal vaccines: current state and future developments. Med Mycol. 2015;53(1):69–89.
  • Firouzmand H, Badiee A, Khamesipour A, et al. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop. 2013;128(3):528–535.
  • Mehravaran A, Rezaei Nasab M, Mirahmadi H, et al. Immunogenicity and protection effects of cationic liposome containing imiquimod adjuvant on leishmaniasis in BALB/c mice. Iran J Basic Med Sci. 2019;22(8):922–931.
  • Bhowmick S, Ravindran R, Ali N. Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine. 2007;25(35):6544–6556.
  • Shargh VH, Jaafari MR, Khamesipour A, et al. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. Vaccine. 2012;30(26):3957–3964.
  • Shargh VH, Jaafari MR, Khamesipour A, et al. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol Res. 2012;111(1):105–114.
  • Hejazi H, Tasbihi M, Jaafari M, et al. The role of liposomal CpG ODN on the course of L major infection in BALB/C mice. Iran J Parasitol. 2010;5(1):47.
  • Tandrup Schmidt S, Foged C, Smith Korsholm K, et al. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics. 2016;8(1):7.
  • Badiee A, Jaafari MR, Khamesipour A, et al. Enhancement of immune response and protection in BALB/c mice immunized with liposomal recombinant major surface glycoprotein of Leishmania (rgp63): the role of bilayer composition. Colloids Surf B Biointerfaces. 2009;74(1):37–44.
  • Mazumdar T, Anam K, Ali N. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J Parasitol. 2005;91(2):269–274.
  • Jaafari MR, Ghafarian A, Farrokh-Gisour A, et al. Immune response and protection assay of recombinant major surface glycoprotein of Leishmania (rgp63) reconstituted with liposomes in BALB/c mice. Vaccine. 2006;24(29–30):5708–5717.
  • Kahl L, Scott C, Lelchuk R, et al. Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunization. J Immunol. 1989;142(12):4441–4449.
  • Sharma SK, Dube A, Nadeem A, et al. Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine. 2006;24(11):1800–1810.
  • Russell DG, Alexander J. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. J Immunol. 1988;140(4):1274–1279.
  • Ribeiro PA, Dias DS, Novais MV, et al. A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine. 2018;111:131–139.
  • McConville MJ, Bacic A, Mitchell GF, et al. Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor. Proc Nat Acad Sci. 1987;84(24):8941–8945.
  • Afrin F, Ali N. Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes. Infect Immun. 1997;65(6):2371–2377.
  • Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect Immun. 2008;76(3):1003–1015.
  • Thakur A, Kaur H, Kaur S. Studies on the protective efficacy of freeze thawed promastigote antigen of Leishmania donovani along with various adjuvants against visceral leishmaniasis infection in mice. Immunobiology. 2015;220(9):1031–1038.
  • Hojatizade M, Badiee A, Khamesipour A, et al. DDA/TDB liposomes containing soluble Leishmania major antigens induced a mixed Th1/Th2 immune response in BALB/c mice. Nanomed J. 2017;4(2):71–82.
  • Bhowmick S, Ali N. Identification of novel Leishmania donovani antigens that help define correlates of vaccine-mediated protection in visceral leishmaniasis. PloS One. 2009;4(6):e5820.
  • Bhowmick S, Mazumdar T, Sinha R, et al. Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J Control Release. 2010;141(2):199–207.
  • Ravindran R, Bhowmick S, Das A, et al. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis. BMC Microbiol. 2010;10(1):181.
  • Jafari I, Shargh VH, Shahryari M, et al. Cationic liposomes formulated with a novel whole Leishmania lysate (WLL) as a vaccine for leishmaniasis in murine model. Immunobiology. 2018;223(6–7):493–500.
  • Badiee A, Jaafari MR, Khamesipour A, et al. The role of liposome charge on immune response generated in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63). Exp Parasitol. 2009;121(4):362–369.
  • Firouzmand H, Sahranavard M, Badiee A, et al. The role of LPD-nanoparticles containing recombinant major surface glycoprotein of Leishmania (rgp63) in protection against leishmaniasis in murine model. Immunopharmacol Immunotoxicol. 2018;40(1):72–82.
  • Fakhraee F, Badiee A, Alavizadeh SH, et al. Coadminstration of L major amastigote class I nuclease (rLmaCIN) with LPD-nanoparticles delays the progression of skin lesion and the L. major dissemination to the spleen in BALB/c mice-based experimental setting. Acta Tropica. 2016;159:211–218.
  • Alavizadeh SH, Badiee A, Khamesipour A, et al. The role of liposome–protamine–DNA nanoparticles containing CpG oligodeoxynucleotides in the course of infection induced by Leishmania major in BALB/c mice. Exp Parasitol. 2012;132(3):313–319.
  • Das A, Ali N. Combining cationic liposomal delivery with MPL-TDM for cysteine protease cocktail vaccination against Leishmania donovani: evidence for antigen synergy and protection. PLoS Negl Trop Dis. 2014;8(8):e3091.
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787.
  • Carstens MG, Camps MG, Henriksen-Lacey M, et al. Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine. 2011;29(29–30):4761–4770.
  • Oussoren C, Zuidema J, Crommelin D, et al. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. II. Influence of liposomal size, lipid composition and lipid dose. Biochimica Et Biophysica Acta (BBA) Biomembr. 1997;1328(2):261–272.
  • McLennan DN, Porter CJ, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today. 2005;2(1):89–96.
  • Badiee A, Khamesipour A, Samiei A, et al. The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen. Exp Parasitol. 2012;132(4):403–409.
  • Shimizu Y, Yamakami K, Gomi T, et al. Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorg Med Chem. 2003;11(7):1191–1195.
  • Eskandari F, Talesh GA, Parooie M, et al. Immunoliposomes containing Soluble Leishmania Antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis. Exp Parasitol. 2014;146:78–86.
  • Badiee A, Jaafari MR, Samiei A, et al. Coencapsulation of CpG oligodeoxynucleotides with recombinant Leishmania major stress-inducible protein 1 in liposome enhances immune response and protection against leishmaniasis in immunized BALB/c mice. Clin Vaccine Immunol. 2008;15(4):668–674.
  • Mazumder S, Ravindran R, Banerjee A, et al. Non-coding pDNA bearing immunostimulatory sequences co-entrapped with leishmanial antigens in cationic liposomes elicits almost complete protection against experimental visceral leishmaniasis in BALB/c mice. Vaccine. 2007;25(52):8771–8781.
  • Ravindran R, Maji M, Ali N. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid–trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol Pharm. 2011;9(1):59–70.
  • Mazumder S, Maji M, Ali N. Potentiating effects of MPL on DSPC bearing cationic liposomes promote recombinant GP63 vaccine efficacy: high immunogenicity and protection. PLoS Negl Trop Dis. 2011;5(12):e1429.
  • Sohrabi Y, Jaafari MR, Mohammadi A, et al. Evaluation of immune response against leishmaniasis in resistance C57 BL/6 mice immunized with liposomes containing autoclaved Leishmania major with BCG. Cell Mol Biol Lett. 2005;10(Suppl 1):S98.
  • Mehravaran A, Nasab MR, Mirahmadi H, et al. Protection induced by Leishmania major antigens and the imiquimod adjuvant encapsulated on liposomes in experimental cutaneous leishmaniasis. Infect Genet Evol. 2019;70:27–35.
  • Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999;185(1):23–35.
  • Maheshwari C, Pandey R, Chaurasiya A, et al. Non-ionic surfactant vesicles mediated transcutaneous immunization against hepatitis B. Int Immunopharmacol. 2011;11(10):1516–1522.
  • LezamaDávila CM. Vaccination of C57BL/10 mice against cutaneous leishmaniasis. Use of purified gp63 encapsulated into niosomes surfactants vesicles: a novel approach. Memórias Inst Oswaldo Cruz. 1999;94(1):67–70.
  • Pardakhty A, Shakibaie M, Daneshvar H, et al. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J Microencapsul. 2012;29(3):219–224.
  • Doroud D, Zahedifard F, Vatanara A, et al. C-terminal domain deletion enhances the protective activity of cpa/cpb loaded solid lipid nanoparticles against Leishmania major in BALB/c mice. PLoS Negl Trop Dis. 2011;5(7):e1236.
  • Gholami E, Zahedifard F, Rafati S. Delivery systems for Leishmania vaccine development. Expert Rev Vaccines. 2016;15(7):879–895.
  • Moser C, Metcalfe IC, Viret J-F. Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines. 2003;2(2):189–196.
  • Liu X, Siegrist S, Amacker M, et al. Enhancement of the immunogenicity of synthetic carbohydrates by conjugation to virosomes: a leishmaniasis vaccine candidate. ACS Chem Biol. 2006;1(3):161–164.
  • Zhou G, Ma Y, Jia P, et al. Enhancement of IL-10 bioactivity using an IL-10 peptide-based vaccine exacerbates Leishmania major infection and improves airway inflammation in mice. Vaccine. 2010;28(7):1838–1846.
  • Moura APV, Santos LC, Brito CRN, et al. Virus-like particle display of the α-Gal carbohydrate for vaccination against Leishmania infection. ACS Cent Sci. 2017;3(9):1026–1031.
  • Allison AC. Squalene and squalane emulsions as adjuvants. Methods. 1999;19(1):87–93.
  • Shahiwala A, Amiji MM. Enhanced mucosal and systemic immune response with squalane oil-containing multiple emulsions upon intranasal and oral administration in mice. J Drug Target. 2008;16(4):302–310.
  • Gradoni L, Manzillo VF, Pagano A, et al. Failure of a multi-subunit recombinant leishmanial vaccine (MML) to protect dogs from Leishmania infantum infection and to prevent disease progression in infected animals. Vaccine. 2005;23(45):5245–5251.
  • Soto M, Ramírez L, Pineda MA, et al. Searching genes encoding Leishmania antigens for diagnosis and protection. Scholar Res Exch. 2009;2009:1–25.
  • Goto Y, Bogatzki LY, Bertholet S, et al. Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine. 2007;25(42):7450–7458.
  • Goto Y, Bhatia A, Raman VS, et al. Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L major infection. Vaccine. 2009;27(21):2884–2890.
  • Trotta T, Fasanella A, Scaltrito D, et al. Comparison between three adjuvants for a vaccine against canine leishmaniasis: in vitro evaluation of macrophage killing ability. Comp Immunol Microbiol Infect Dis. 2010;33(2):175–182.
  • Coler RN, Duthie MS, Hofmeyer KA, et al. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH‐F3+ GLA‐SE. Clin Transl Immunology. 2015;4(4):e35.
  • Daifalla NS, Bayih AG, Gedamu L. Immunogenicity of Leishmania donovani iron superoxide dismutase B1 and peroxidoxin 4 in BALB/c mice: the contribution of Toll-like receptor agonists as adjuvant. Exp Parasitol. 2011;129(3):292–298.
  • Daifalla NS, Bayih AG, Gedamu L. Leishmania donovani recombinant iron superoxide dismutase B1 protein in the presence of TLR-based adjuvants induces partial protection of BALB/c mice against Leishmania major infection. Exp Parasitol. 2012;131(3):317–324.
  • Gomes R, Teixeira C, Oliveira F, et al. KSAC, a defined Leishmania antigen, plus adjuvant protects against the virulence of L major transmitted by its natural vector Phlebotomus duboscqi. PLoS Negl Trop Dis. 2012;6(4):e1610.
  • Mutiso JM, Macharia JC, Kariuki TM, et al. Montanide ISA 720 is more effective than BCG as an adjuvant for Leishmania killed vaccine in BALB/c mice. Int J Integ Biol. 2009;7:2.
  • Mutiso JM, Macharia JC, Taracha E, et al. Leishmania donovani whole cell antigen delivered with adjuvants protects against visceral leishmaniasis in vervet monkeys (Chlorocebus aethiops). J Biomed Res. 2012;26(1):8.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.
  • Heidari-Kharaji M, Taheri T, Doroud D, et al. Solid lipid nanoparticle loaded with paromomycin: in vivo efficacy against Leishmania tropica infection in BALB/c mice model. Appl Microbiol Biotechnol. 2016;100(16):7051–7060.
  • Heidari‐Kharaji M, Taheri T, Doroud D, et al. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol. 2016;38(10):599–608.
  • Doroud D, Vatanara A, Zahedifard F, et al. Cationic solid lipid nanoparticles loaded by cystein proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J Pharm Pharm Sci. 2010;13(3):320–335.
  • Marcato PD, Durán N. New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol. 2008;8(5):2216–2229.
  • Doroud D, Zahedifard F, Vatanara A, et al. Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. J Control Release. 2011;153(2):154–162.
  • Doroud D, Zahedifard F, Vatanara A, et al. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol. 2011;33(6):335–348.
  • Saljoughian N, Zahedifard F, Doroud D, et al. Cationic solid–lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol. 2013;35(12):397–408.
  • Shahbazi M, Zahedifard F, Saljoughian N, et al. Immunological comparison of DNA vaccination using two delivery systems against canine leishmaniasis. Vet Parasitol. 2015;212(3–4):130–139.
  • Kersten G, Hirschberg H. Antigen delivery systems. Expert Rev Vaccines. 2004;3(4):453–462.
  • Harikrishnan R, Balasundaram C, Heo M-S. Poly d, l-lactide-co-glycolic acid (PLGA)-encapsulated vaccine on immune system in Epinephelus bruneus against Uronema marinum. Exp Parasitol. 2012;131(3):325–332.
  • Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 2007;120(12):2527–2537.
  • Tafaghodi M, Eskandari M, Kharazizadeh M, et al. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Trop Biomed. 2010;27(3):639–650.
  • Tafaghodi M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol Res. 2011;108(5):1265–1273.
  • Athanasiou E, Agallou M, Tastsoglou S, et al. A poly (lactic-co-glycolic) acid nanovaccine based on chimeric peptides from different Leishmania infantum proteins induces dendritic cells maturation and promotes peptide-specific IFNγ-producing CD8+ T cells essential for the protection against experimental visceral leishmaniasis. Front Immunol. 2017;8:684.
  • Noormehr H, Hosseini AZ, Soudi S, et al. Enhancement of Th1 immune response against Leishmania cysteine peptidase A, B by PLGA nanoparticle. Int Immunopharmacol. 2018;59:97–105.
  • Santos DM, Carneiro MW, de Moura TR, et al. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine. 2012;7:2115.
  • Margaroni M, Agallou M, Athanasiou E, et al. Vaccination with poly (D, L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. Int J Nanomedicine. 2017;12:6169.
  • Ospina-Villa JD, Gómez-Hoyos C, Zuluaga-Gallego R, et al. Encapsulation of proteins from Leishmania panamensis into PLGA particles by a single emulsion-solvent evaporation method. J Microbiol Methods. 2019;162:1–7.
  • Spitzer N, Jardim A, Lippert D, et al. Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine. 1999;17(11–12):1298–1300.
  • Rafati S, Kariminia A, Seyde-Eslami S, et al. Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon gamma producing CD8+ T lymphocyte activation. Vaccine. 2002;20(19–20):2439–2447.
  • Zadeh-Vakili A, Taheri T, Taslimi Y, et al. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine. 2004;22(15–16):1930–1940.
  • Danesh-Bahreini MA, Shokri J, Samiei A, et al. Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine. 2011;6:835.
  • Hojatizade M, Soleymani M, Tafaghodi M, et al. Chitosan nanoparticles loaded with whole and soluble leishmania antigens, and evaluation of their immunogenicity in a mouse model of Leishmaniasis. Iran J Immunol. 2018;15(4):281–293.
  • Kedzierski L. Leishmaniasis vaccine: where are we today? J Glob Infect Dis. 2010;2(2):177.
  • Obaid KA, Ahmad S, Khan HM, et al. Protective effect of L donovani antigens using glucan as an adjuvant. Int J Immunopharmacol. 1989;11(3):229–235.
  • Tafaghodi M, Tabassi SAS, Jaafari MR. Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm. 2006;319(1–2):37–43.
  • Tafaghodi M, Sajadi Tabasi SA, Payan M. Alginate microsphere as a delivery system and adjuvant for autoclaved Leishmania major and Quillaja saponin: preparation and characterization. Iran J Pharm Sci. 2007;3(2):61–68.
  • Tafaghodi M, Eskandari M, Khamesipour A, et al. Immunization against cutaneous leishmaniasis by alginate microspheres loaded with autoclaved Leishmania Major (ALM) and Quillaja saponins. Iran J Pharm Res. 2016;15(2):573.
  • Tafaghodi M, Eskandari M, Khamesipour A, et al. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp Parasitol. 2011;129(2):107–114.
  • Lou PJ, Cheng WF, Chung YC, et al. PMMA particle‐mediated DNA vaccine for cervical cancer. J Biomed Mater Res A. 2009;88(4):849–857.
  • Zarrati S, Maleki F, Mahdavi M, et al. Humoral immune responses in DNA vaccine formulated with poly [methyl methacrylate] against Leishmania major. India J Entomol Zool Stud. 2014;2(5):201–206.
  • Zarrati S, Mahdavi M, Tabatabaie F. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major. J Parasitic Dis. 2016;40(2):427–435.
  • Tabatabaie F, Samarghandi N, Zarrati S, et al. Induction of immune responses by DNA vaccines formulated with Dendrimer and Poly (Methyl Methacrylate)(PMMA) Nano-Adjuvants in BALB/c mice infected with leishmania major. Open Access Maced J Med Sci. 2018;6(2):229.
  • Nordly P, Madsen HB, Nielsen HM, et al. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin Drug Deliv. 2009;6(7):657–672.
  • Sjölander A, Van’t Land B, Bengtsson KL. Iscoms containing purifiedQuillajasaponins upregulate both Th1-like and Th2-like immune responses. Cell Immunol. 1997;177(1):69–76.
  • Saroja C, Lakshmi P, Bhaskaran S. Recent trends in vaccine delivery systems: a review. Int J Pharm Invest. 2011;1(2):64.
  • McBurney WT, Lendemans DG, Myschik J, et al. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine. 2008;26(35):4549–4556.
  • Sjölander A, Baldwin TM, Curtis JM, et al. Induction of a Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to leishmaniasis. J Immunol. 1998;160(8):3949–3957.
  • Sjölander A, Baldwin TM, Curtis JM, et al. Vaccination with recombinant Parasite Surface Antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine. 1998;16(20):2077–2084.
  • Papadopoulou G, Karagouni E, Dotsika E. ISCOMs vaccine against experimental leishmaniasis. Vaccine. 1998;16(9–10):885–892.
  • Mehravaran A, Jaafari MR, Jalali SA, et al. The role of surface charge of ISCOMATRIX nanoparticles on the type of immune response generated against Leishmaniasis in BALB/c mice. Nanomed J. 2015;2(4):249–260.
  • Mehravaran A, Jaafari MR, Jalali SA, et al. The role of ISCOMATRIX bilayer composition to induce a cell mediated immunity and protection against leishmaniasis in BALB/c mice. Iran J Basic Med Sci. 2016;19(2):178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.