341
Views
20
CrossRef citations to date
0
Altmetric
Review

Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug–polymer and interpolymer interactions

&
Pages 1345-1359 | Received 19 Mar 2020, Accepted 26 Jun 2020, Published online: 16 Oct 2020

References

  • De Robertis S, Bonferoni MC, Elviri L, et al. Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert Opin Drug Deliv. 2015 Mar;12(3):441–453.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–1662.
  • Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym. 2019 August;225:115210.
  • Batista P, Castro PM, Madureira AR, et al. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018 January;101:112–123.
  • Mohammed MA, Syeda JTM, Wasan KM, et al. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951.
  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–526.
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–570.
  • Bakhru SH, Furtado S, Morello AP, et al. Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev. 2013;65(6):811–821.
  • Griffin BT, Guo J, Presas E, et al. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv. Drug Deliv Rev. 2016;106:367–380.
  • Doane T, Burda C. Nanoparticle mediated non-covalent drug delivery. Adv Drug Deliv Rev. 2013 May; 65(5):607–621.
  • Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, et al. Pharmacokinetic aspects of nanoparticle-in-matrix drug delivery systems for oral/buccal delivery. Front Pharmacol. 2019 Sep;10:1057.
  • Huang J, Wigent RJ, Schwartz JB. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci. 2008;97(1):251–262.
  • Bromberg L. Polymeric micelles in oral chemotherapy. J Control Release. 2008;128(2):99–112.
  • Niu Z, Conejos-Sánchez I, Griffin BT, et al. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337–354.
  • Chen MC, Wong H-S, Lin K-J, et al. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials. 2009;30(34):6629–6637.
  • Lin YH, Chang CH, Wu YS, et al. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials. 2009;30(19):3332–3342.
  • Bowman K, Sarkar R, Raut S, et al. Gene transfer to hemophilia A mice via oral delivery of FVIII – chitosan nanoparticles. J Control Release. 2008;132(3):252–259.
  • Li G, Liu Z, Liao B, et al. Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen der p 2 for oral vaccination in mice. Cell Mol Immunol. 2009;6(1):45-50.
  • Ballarín-gonzález B, Dagnaes-hansen F, Fenton RA, et al. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol Ther Nucleic Acids. 2013 March;2:e76.
  • Kasimova MR, Velázquez-Campoy A, Nielsen HM. On the temperature dependence of complex formation between chitosan and proteins. Biomacromolecules. 2011;12(7):2534–2543.
  • Mukhopadhyay P, Sarkar K, Chakraborty M, et al. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C. 2013;33(1):376–382.
  • Cho HJ, Oh J, Choo MK, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.
  • Kumari Y, Singh SK, Kumar R, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2020 Apr;149:976–988.
  • Rahmani V, Sheardown H. Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int J Pharm. 2018;535(1–2):452–461.
  • Rahmani V, Elshereef R, Sheardown H. Optimizing electrostatic interactions for controlling the release of proteins from anionic and cationically modified alginate. Eur J Pharm Biopharm. 2017;117:232–243.
  • Korsmeyer RW, Peppas NA. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J Memb Sci. 1981 Jan;9(3):211–227.
  • George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Release. 2006;114(1):1–14.
  • Cerciello A, Auriemma G, Morello S, et al. Design and in vivo anti-inflammatory effect of ketoprofen delayed delivery systems. J Pharm Sci. 2015;104(10):3451–3458.
  • Lankalapalli S, Kolapalli VRM. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci. 2009 Feb 01;71(5):481–487. Wolters Kluwer – Medknow Publications.
  • Goycoolea FM, Brunel F, Gueddari NEE, et al. Physical properties and stability of soft gelled chitosan-based nanoparticles. Macromol Biosci. 2016;16(12):1873–1882.
  • Bugnicourt L, Ladavière C. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog Polym Sci. 2016;60:1–17.
  • Sawtarie N, Cai Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf B Biointerfaces. 2017;157:110–117.
  • Boonsongrit Y, Mitrevej A, Mueller BW. Chitosan drug binding by ionic interaction. Eur J Pharm Biopharm. 2006;62(3):267–274.
  • Derakhshandeh K, Fathi S. Role of chitosan nanoparticles in the oral absorption of Gemcitabine. Int J Pharm. 2012;437(1–2):172–177.
  • Papadimitriou S, Bikiaris D, Avgoustakis K, et al. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73(1):44–54.
  • Rishi P, Bhogal A, Arora S, et al. Improved oral therapeutic potential of nanoencapsulated cryptdin formulation against Salmonella infection. Eur J Pharm Sci. 2015;72:27–33.
  • Pan Y, Li Y,  Zhao H, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1–2):139–147.
  • He Z, Santos JL, Tian H, et al. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials. 2017;130:28–41.
  • Diop M, Auberval N, Viciglio A, et al. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int J Pharm. 2015;491(1–2):402–408.
  • Amidon GL, Lennernäs H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci.. 1995;12(3):413–420.
  • Xue M, Hu S, Lu Y, et al. Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm. 2015;495(2):771–782.
  • Vimal S, Taju G, Nambi KSN, et al. Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in fish. Aquaculture. 2012;358–359:14–22.
  • Kumar MNVR, Muzzarelli RAA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004 Dec;104(12):6017–6084.
  • Quiñones JP, Peniche H, Peniche C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers. 2018;10(3):1–32.
  • Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–451.
  • Sahoo P, Leong KH, Nyamathulla S, et al. Optimization of pH-responsive carboxymethylated iota-carrageenan/chitosan nanoparticles for oral insulin delivery using response surface methodology. React Funct Polym. 2017 Oct;119:145–155.
  • Nguyen HN, Wey S-P, Juang J-H, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials. 2011;32(10):2673–2682.
  • Lin YH, Sonaje K, Lin KM, et al. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release. 2008;132(2):141–149.
  • Chang CH, Lin Y-H, Yeh C-L, et al. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules. 2010;11(1):133–142.
  • Biswas S, Chattopadhyay M, Sen KK, et al. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym. 2015;121:403–410.
  • Sarmento B, Ribeiro A, Veiga F. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–2206.
  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, et al. PH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640–648.
  • Zhang Y, Wei W, Lv P, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm. 2011;77(1):11–19.
  • Woitiski CB, Neufeld RJ, Ribeiro AJ, et al. Colloidal carrier integrating biomaterials for oral insulin delivery: influence of component formulation on physicochemical and biological parameters. Acta Biomater. 2009;5(7):2475–2484.
  • Reis CP, Ribeiro AJ, Veiga F, et al. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug Deliv. 2008;15(2):127–139.
  • Reis CP, Veiga FJ, Ribeiro AJ, et al. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J Pharm Sci. 2008 Dec;97(12):5290–5305.
  • Sarmento B, Ribeiro A, Veiga F, et al. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007;8(10):3054–3060.
  • Lopes M, Shrestha N, Correia A, et al. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release. 2016;232:29–41.
  • Oliveira CR, Rezende CMF, Silva MR, et al. A new strategy based on smrho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLoS Negl Trop Dis. 2012;6(11):e1894.
  • Avadi MR, Mir A, Sadeghi M, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine Nanotechnology, Biol Med. 2010;6(1):58–63.
  • Naidu FJ, Diwan PV, Sashidhar RB. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym. 2009;76(3):464–471.
  • Alonso-Sande M, Cuña M, Remuñán-López C, et al. Formation of new Glucomannan-Chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules. 2006;39(12):4152–4158.
  • Shapira A, Markman G, Assaraf YG, et al. β-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity. Nanomedicine Nanotechnology, Biol Med. 2010;6(4):547–555.
  • Soudry-Kochavi L, Naraykin N, Nassar T, et al. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release. 2015;217:202–210.
  • Golla K, Bhaskar C, Ahmed F, et al. A target-specific oral formulation of Doxorubicin-protein nanoparticles: efficacy and safety in Hepato-cellular cancer. J Cancer. 2013;4(8):644–652.
  • Lee S, Alwahab NSA, Moazzam ZM. Zein-based oral drug delivery system targeting activated macrophages. Int J Pharm. 2013;454(1):388–393.
  • Peñalva R, Esparza I, González-Navarro CJ, et al. Zein nanoparticles for oral folic acid delivery. J Drug Deliv Sci Technol. 2015;30:450–457.
  • Chen L, Subirade M. Elaboration and characterization of soy/zein protein microspheres for controlled nutraceutical delivery. Biomacromolecules. 2009;10(12):3327–3334.
  • Ling K, Wu H, Neish AS, et al. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release. 2019 December;295:174–186. 2018.
  • Imperiale JC, Nejamkin P, Del Sole MJ, et al. Novel protease inhibitor-loaded nanoparticle-in-microparticle delivery system leads to a dramatic improvement of the oral pharmacokinetics in dogs. Biomaterials. 2015;37:383–394.
  • Augustine R, Ashkenazi DL, Arzi RS, et al. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination. Acta Biomater. 2018;74:344–359.
  • Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26(5):1025–1058.
  • Farjami T, Madadlou A. Fabrication methods of biopolymeric microgels and microgel-based hydrogels. Food Hydrocoll.. 2017;62: 262–272.
  • Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci. 2014;19(5):417–427.
  • Capretto L, Carugo D, Mazzitelli S, et al. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65(11–12):1496–1532.
  • Chiesa E, Dorati R, Pisani S, et al. The microfluidic technique and the manufacturing of polysaccharide nanoparticles. Pharmaceutics. 2018;10(4):267.
  • He Q, Ao Q, Gong Y, et al. Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med. 2011;22(12):2791–2802.
  • Hao S, Wang, Y, Wang B, et al. Rapid preparation of pH-sensitive polymeric nanoparticle with high loading capacity using electrospray for oral drug delivery. Adv Mater Technol. 2019;10(3):19–24.
  • Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–1713.
  • Almalik A, Alradwan I, Kalam MA, et al. Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharm J. 2017;25(6):861–867.
  • Anhorn MG, Mahler HC, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363(1–2):162–169.
  • Dadparvar M, Wagner S, Wien S, et al. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability. Eur J Pharm Biopharm. 2014;88(2):510–517.
  • Rampino A, Borgogna M, Blasi P, et al. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455(1–2):219–228.
  • Cerchiara T, Abruzzo A, Di Cagno M, et al. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm. 2015;92:112–119.
  • Ziaee A, Albadarin AB, Padrela L, et al. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019 April;127:300–318. 2018.
  • Lee SH, Heng D, Ng WK, et al. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011;403(1–2):192–200.
  • Arpagaus C. Pharmaceutical particle engineering via nano spray drying – -process parameters and application examples on the laboratory-scale. Int. J. Med. Nano Res.. 2018;5(1): DOI: 10.23937/2378-3664.1410026.
  • Li X, Anton N, Arpagaus C, et al. Nanoparticles by spray drying using innovative new technology: the Büchi Nano Spray Dryer B-90. J Control Release. 2010;147(2):304–310.
  • Nguyen TV, Nguyen TTH, Wang SL, et al. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res. Chem. Intermed.. 2017;43(6):3527–3537.
  • Ngan LTK, Wang S-L, Hiep ĐM, et al. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res. Chem. Intermed.. 2014;40(6):2165–2175.
  • Tokárová V, Kašpar O, Knejzlík Z, et al. Development of spray-dried chitosan microcarriers for nanoparticle delivery. Powder Technol. 2013;235:797–7805.
  • Rossi I, Buttini F, Sonvico F, et al. Sodium hyaluronate nanocomposite respirable microparticles to tackle antibiotic resistance with potential application in treatment of mycobacterial pulmonary infections. Pharmaceutics. 2019 May;11(5):203.
  • Pérez-Masiá R, López-Nicolás R, Periago MJ, et al. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015;168:124–133.
  • Wu Y, Mackay JA, Mcdaniel JR, et al. Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules. 2009;10(1):19–24.
  • Bose S, Schenck D, Ghosh I, et al. Application of spray granulation for conversion of a nanosuspension into a dry powder form. Eur J Pharm Sci. 2012;47(1):35–43.
  • Caro León FJ, Lizardi-Mendoza J, Argüelles-Monal W, et al. Supercritical CO2 dried chitosan nanoparticles: production and characterization. RSC Adv. 2017;7(49):30879–30885.
  • Pasquali I, Bettini R. Are pharmaceutics really going supercritical? Int J Pharm. 2008;364(2):176–187.
  • Rinaudo M. Non-covalent interactions in polysaccharide systems. Macromol Biosci. 2006 Aug;6(8):590–610.
  • Boonsongrit Y, Mueller BW, Mitrevej A. Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur J Pharm Biopharm. 2008;69(1):388–395.
  • Azevedo JR, Sizilio RH, Brito MB, et al. Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J Therm Anal Calorim. 2011;106(3):685–689.
  • Sarmento B, Ferreira D, Veiga F, et al. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers. 2006;66(1):1–7.
  • Veenstra TD. Electrospray ionization mass spectrometry in the study of biomolecular non-covalent interactions. Biophys Chem. 1999 Jun;79(2):63–79.
  • Chen F, Gülbakan B, Weidmann S, et al. Applying mass spectrometry to study non-covalent biomolecule complexes. Mass Spectrom Rev. 2016 Jan;35(1):48–70.
  • Elviri L, Bergonzi C, Bianchera A, et al. Mapping insulin non-covalent interactions with natural polysaccharides by hydrogen/deuterium exchange mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(21):2323–2330.
  • Yahyaei M, Mehrnejad F, Naderi-manesh H, et al. Protein adsorption onto polysaccharides: comparison of chitosan and chitin polymers. Carbohydr Polym. 2018 Jul;191:191–197.
  • Salar S, Mehrnejad F, Sajedi RH, et al. Chitosan nanoparticles-trypsin interactions: bio-physicochemical and molecular dynamics simulation studies. Int J Biol Macromol. 2017 Oct;103:902–909.
  • Ramezanpour M, Leung SSW, Delgado-Magnero KH, et al. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim Biophys Acta - Biomembr. 2016 Jul;1858(7):1688–1709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.