226
Views
12
CrossRef citations to date
0
Altmetric
Review

Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers)

, &
Pages 103-118 | Received 08 Jun 2020, Accepted 02 Oct 2020, Published online: 14 Oct 2020

References

  • Teijeiro-Valiño C, Novoa-Carballal R, Borrajo E, et al. A multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release. 2019;294:154–164.
  • Pontes JF, Grenha A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials. 2020;10(2):183.
  • Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357.
  • Bernabeu E, Cagel M, Lagomarsino E, et al. Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm. 2017 Jun 30;526(1–2):474–495.
  • Abd-Rabou AA, Ahmed HH. Bevacizumab and CCR2 inhibitor nanoparticles induce cytotoxicity-mediated apoptosis in doxorubicin-treated hepatic and non-small lung cancer cells. Asian Pac J Cancer Prev. 2019;20(7):2225.
  • Misra A, Jinturkar K, Patel D, et al. Recent advances in liposomal dry powder formulations: preparation and evaluation. Expert Opin Drug Deliv. 2009;6(1):71–89.
  • Prabha S, Sharma B, Labhasetwar V. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice. Cancer Gene Ther. 2012;19(8):530–537.
  • Roblek M, Calin M, Schlesinger M, et al. Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis. J Control Release. 2015;220:341–347.
  • Wadhawan A, Chatterjee M, Singh G. Present scenario of bioconjugates in cancer therapy: a review. Int J Mol Sci. 2019;20(21):5243.
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–1555.
  • Soni G, Yadav KS. Communication of drug loaded nanogels with cancer cell receptors for targeted delivery. In: Modeling, methodologies and tools for molecular and nano-scale communications. Cham: Springer; 2017. p. 503–515. DOI:10.1007/978-3-319-50688-3_21.
  • Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci. 2019;239:117060.
  • Qiao ZY, Zhang R, Du FS, et al. Multi-responsive nanogels containing motifs of ortho ester, oligo (ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release. 2011;152(1):57–66.
  • Gulzar A, Xu J, Wang C, et al. Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today. 2019;26:16–56.
  • Patel J, Amrutiya J, Bhatt P, et al. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul. 2018;35(2):204–217.
  • Pethe AM, Yadav KS. Polymers, responsiveness and cancer therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):395–405.
  • Jafari B, Pourseif MM, Barar J, et al. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv. 2019;16(6):583–605.
  • Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharm J. 2016;24(2):133–139.
  • Garbuzenko OB, Kuzmov A, Taratula O, et al. Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo-and gene therapy. Theranostics. 2019;9(26):8362.
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–273.
  • Barbu E, Molnàr É, Tsibouklis J, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv. 2009;6(6):553–565.
  • Chen N, Wang H, Huang Q, et al. Long‐term effects of nanoparticles on nutrition and metabolism. Small. 2014;10(18):3603–3611.
  • McAuliffe ME, Perry MJ. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology. 2007;1(3):204–210.
  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(1):32.
  • Kharkar PS, Soni G, Rathod V, et al. An outlook on procedures of conjugating folate to (co) polymers and drugs for effective cancer targeting. Drug Dev Res. 2020. DOI:10.1002/ddr.21698.
  • Xia Y, Chen Y, Hua L, et al. Functionalized selenium nanoparticles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy. Int J Nanomedicine. 2018;13:6929.
  • Wang H, Agarwal P, Zhao S, et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials. 2015;72:74–89.
  • Yan H, You Y, Li X, et al. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front Pharmacol. 2020;11:898.
  • Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine. 2017;12:935.
  • Kushwah V, Katiyar SS, Dora CP, et al. Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta Biomater. 2018;73:424–436.
  • Hagmann W, Faer R, Schnölzer M, et al. Membrane drug transporters and chemoresistance in human pancreatic carcinoma. Cancers (Basel). 2011;3(1):106–125.
  • Yadav KS, Mishra DK, Deshpande A, et al. Levels of drug targeting. In: Basic fundamentals of drug delivery Academic Press; 2019. p 269–305. DOI:10.1016/B978-0-12-817909-3.00007-8.
  • Li Y, Yang HY, Thambi T, et al. Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials. 2019;217:119299.
  • Wang W, Xi M, Duan X, et al. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int J Nanomedicine. 2015;10:3737.
  • Liu Y, Sun J, Cao W, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421(1):160–169.
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–135.
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–818.
  • Khan MM, Madni A, Torchilin V, et al. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv. 2019;26(1):765–772.
  • Li XT, Zhou ZY, Jiang Y, et al. PEGylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J Drug Target. 2015;23(3):232–243.
  • Lin C, Zhang X, Chen H, et al. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv. 2018;25(1):256–266.
  • Kong L, Cai FY, Yao XM, et al. RPV‐modified epirubicin and dioscin co‐delivery liposomes suppress non‐small cell lung cancer growth by limiting nutrition supply. Cancer Sci. 2020;111(2):621.
  • Liu JJ, Tang W, Fu M, et al. Development of R8 modified epirubicin–dihydroartemisinin liposomes for treatment of non-small-cell lung cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):1947–1960.
  • Song Z, Shi Y, Han Q, et al. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2018;105:18–26.
  • Perepelyuk M, Maher C, Lakshmikuttyamma A, et al. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int J Nanomedicine. 2016;11:3533.
  • Song Y, Zhou B, Du X, et al. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother. 2020;125:109561.
  • Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445.
  • Yew YP, Shameli K, Miyake M, et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab J Chem. 2020;13(1):2287–2308.
  • Meng Y, Shi C, Hu B, et al. External magnetic field promotes homing of magnetized stem cells following subcutaneous injection. BMC Cell Biol. 2017;18(1):24.
  • Shetty SR, Upadhya A. Magnetic nano-systems in drug delivery and biomedical applications. In: Multifunctional nanocarriers for contemporary healthcare applications. Pennsylvania, USA: IGI Global; 2018. p. 157–191.
  • Teeguarden JG, Mikheev VB, Minard KR, et al. Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Part Fibre Toxicol. 2014;11(1):1–18.
  • Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials. 2013;34(21):5163–5171.
  • Verma NK, Staunton KC, Satti A, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnology. 2013;11:1.
  • Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci. 2017;249:386–399.
  • Tiwari PM, Vig K, Dennis VA, et al. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011;1(1):31–63.
  • Qian Y, Qiu M, Wu Q, et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep. 2014;4(1):1–8.
  • Ke S, Zhou T, Yang P, et al. Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. Int J Nanomedicine. 2017;12:2531.
  • Cryer AM, Chan C, Eftychidou A, et al. Tyrosine kinase inhibitor gold nanoconjugates for the treatment of non-small cell lung cancer. ACS Appl Mater Interfaces. 2019;11(18):16336–16346.
  • Thambiraj S, Shruthi S, Vijayalakshmi R, et al. Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery. Cancer Treat Res Commun. 2019;21:100157.
  • Zheng Y, Zhang J, Zhang R, et al. Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. Artif Cells Nanomed Biotechnol. 2019;47(1):3101–3109.
  • Kapp TG, Rechenmacher F, Neubauer S, et al. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci Rep. 2017;7:39805.
  • Pan J, Rostamizadeh K, Filipczak N, et al. Polymeric co-delivery systems in cancer treatment: an overview on component drugs’ dosage ratio effect. Molecules. 2019;24(6):1035.
  • Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, et al. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today. 2020;25:1416–1430.
  • Scagliotti GV, Parikh P, Von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–3551.
  • Zhang R, Ru Y, Gao Y, et al. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des Devel Ther. 2017;11:2631.
  • Nandhakumar S, Dhanaraju MD, Sundar VD, et al. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly (ε-caprolactone) nanoparticles. Bull Faculty Pharm Cairo Univ. 2017;55(2):249–258.
  • Yameen B, Choi WI, Vilos C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–499.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12(2):255–264.
  • Young CC, Vedadghavami A, Bajpayee AG. Bioelectricity for drug delivery: the promise of cationic therapeutics. Bioelectricity. 2020;2:68–81.
  • Xiong Y, Zhao Y, Miao L, et al. Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Control Release. 2016;244:63–73.
  • Sun Y, Miao H, Ma S, et al. FePt-Cys nanoparticles induce ROS-dependent cell toxicity, and enhance chemo-radiation sensitivity of NSCLC cells in vivo and in vitro. Cancer Lett. 2018;418:27–40.
  • Shi H, Xu M, Zhu J, et al. Programmed co-delivery of platinum nanodrugs and gemcitabine by a clustered nanocarrier for precision chemotherapy for NSCLC tumors. J Mater Chem B. 2020;8(2):332–342.
  • You C, Wu H, Wang M, et al. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nanotechnology. 2017;29(1):015601.
  • Wu C, Xu J, Hao Y, et al. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells. Int J Nanomedicine. 2017;12:7979.
  • Haider N, Fatima S, Taha M, et al. Nanomedicines in diagnosis and treatment of cancer: an update. Curr Pharm Des. 2020;26(11):1216–1231.
  • Zhang RX, Wong HL, Xue HY, et al. Nanomedicine of synergistic drug combinations for cancer therapy–strategies and perspectives. J Control Release. 2016;240:489–503.
  • Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomedicine. 2008;3(1):1.
  • Schlosser PM, Asgharian BA, Medinsky M. Inhalation exposure and absorption of toxicants. Compr Toxicol Second Ed. 2010;1–14:75–109.
  • Breeze R, Turk M. Cellular structure, function and organization in the lower respiratory tract. Environ Health Perspect. 1984;55:3–24.
  • Liu Q, Guan J, Qin L, et al. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today. 2020;25:150–159.
  • Gill S, Löbenberg R, Ku T, et al. Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery - A review. J Biomed Nanotechnol. 2007;3:107–119.
  • Carvalho TC, Peters JI, Williams RO. Influence of particle size on regional lung deposition - what evidence is there? Int J Pharm. 2011;406:1–10.
  • Liang Z, Ni R, Zhou J, et al. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015;20:380–389.
  • Amararathna M, Goralski K, Hoskin D, et al. Pulmonary nano-drug delivery systems for lung cancer: current knowledge and prospects. J Lung Health Dis. 2019;3:11–28.
  • Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241.
  • Löndahl J, Massling A, Pagels J, et al. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal Toxicol. 2007;19(2):109–116.
  • Makino K, Yamamoto N, Higuchi K, et al. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloids Surf B Biointerfaces. 2003;27:33–39.
  • Lee SY, Jung E, Park JH, et al. Transient aggregation of chitosan-modified poly (d, l-lactic-co-glycolic) acid nanoparticles in the blood stream and improved lung targeting efficiency. J Colloid Interface Sci. 2016;480:102–108.
  • Perepelyuk M, Sacko K, Thangavel K, et al. Evaluation of MUC1-aptamer functionalized hybrid nanoparticles for targeted delivery of miRNA-29b to nonsmall cell lung cancer. Mol Pharm. 2018;15(3):985–993.
  • Sacko K, Thangavel K, Shoyele SA. Codelivery of genistein and miRNA-29b to A549 cells using aptamer-hybrid nanoparticle bioconjugates. Nanomaterials. 2019;9(7):1052.
  • Zarogoulidis K, Zarogoulidis P, Darwiche K, et al. Treatment of non-small cell lung cancer (NSCLC). J Thorac Dis. 2013;5(Suppl.4):2–9.
  • Li C, Hu J, Li W, et al. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci. 2017;5(1):77–88.
  • Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790–810.
  • Vlahov IR, Leamon CP. Engineering folate–drug conjugates to target cancer: from chemistry to clinic. Bioconjug Chem. 2012;23(7):1357–1369.
  • Vergote I, Leamon CP. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther Adv Med Oncol. 2015;7(4):206–218.
  • Mangal S, Gao W, Li T, et al. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38(6):782–797.
  • Kaur G, Narang RK, Rath G, et al. Advances in pulmonary delivery of nanoparticles. Artif Cell Blood Subtitutes. 2012;40(1–2):75–96.
  • Lee WH, Loo CY, Traini D, et al. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10(6):481–489.
  • Abdelaziz HM, Gaber M, Abd-Elwakil MM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018;269:374–392.
  • Ferrari S, Pettenazzo A, Garbati N, et al. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta, Gene Struct Expression. 1999;1447(2–3):219–225.
  • Vuorimaa-Laukkanen E, Lisitsyna ES, Ketola TM, et al. Difference in the core-shell dynamics of polyethyleneimine and poly (l-lysine) DNA polyplexes. Eur J Pharm Sci. 2017;103:122–127.
  • Tang Y, Liu Y, Xie Y, et al. Apoptosis of A549 cells by small interfering RNA targeting survivin delivery using poly-β-amino ester/guanidinylated O-carboxymethyl chitosan nanoparticles. Asian J Pharm Sci. 2020;15(1):121–128.
  • Koshkina NV, Knight V, Gilbert BE, et al. Improved respiratory delivery of the anticancer drugs, camptothecin and paclitaxel, with 5% CO 2-enriched air: pharmacokinetic studies. Cancer Chemother Pharmacol. 2001;47(5):451–456.
  • Long JT, Cheang TY, Zhuo SY, et al. Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis. J Nanobiotechnology. 2014;12:37.
  • Videira M, Almeida AJ, Fabra A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 2012;8:1208–1215.
  • Kim I, Byeon HJ, Kim TH, et al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 2013;34:6444–6453.
  • Roa WH, Azarmi S, Al-Hallak MH, et al. Inhalable nanoparticles, a noninvasive approach to treat lung cancer in a mouse model. J Control Release. 2011;150:49–55.
  • Shukla SK, Kulkarni NS, Farrales P, et al. Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm Res. 2020;37(3):1–9.
  • Li S, Fang C, Zhang J, et al. Catanionic lipid nanosystems improve pharmacokinetics and anti-lung cancer activity of curcumin. Nanomedicine. 2016;12(6):1567–1579.
  • Kabary DM, Helmy MW, Abdelfattah EZ, et al. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur J Pharm Biopharm. 2018;130:152–164.
  • Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244–1253.
  • Joshi N, Shirsath N, Singh A, et al. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep. 2014;4:7085.
  • Arbain NH, Salim N, Masoumi HR, et al. In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res. 2019;9(2):497–507.
  • Chen Y, Chen C, Zhang X, et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm Sin B. 2020;10(6):1106–1121.
  • Guo Y, Wang L, Lv P, et al. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett. 2015;9(3):1065–1072.
  • Soni N, Soni N, Pandey H, et al. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J Colloid Interface Sci. 2016;481:107–116.
  • Zhu X, Kong Y, Liu Q, et al. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm Pharmacol Ther. 2019;55:50–61.
  • Kuehl PJ, Tellez CS, Grimes MJ, et al. 5-Azacytidine inhaled dry powder formulation profoundly improves pharmacokinetics and efficacy for lung cancer therapy through genome reprogramming. Br J Cancer. 2020;122(8):1194–1204.
  • Zou Y, Sun Y, Guo B, et al. α3β1 integrin-targeting polymersomal docetaxel as an advanced nanotherapeutic for nonsmall cell lung cancer treatment. ACS Appl Mater Interfaces. 2020;12(13):14905–14913.
  • Abdelaziz HM, Elzoghby AO, Helmy MW, et al. Inhalable lactoferrin/chondroitin-functionalized monoolein nanocomposites for localized lung cancer targeting. ACS Biomater Sci Eng. 2020;6(2):1030–1042.
  • Nan Y. Lung carcinoma therapy using epidermal growth factor receptor-targeted lipid polymeric nanoparticles co-loaded with cisplatin and doxorubicin. Oncol Rep. 2019;42(5):2087–2096.
  • Jiang M, Zhang E, Liang Z, et al. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J Drug Deliv Sci Technol. 2019;54:101316.
  • Kaur P, Mishra V, Shunmugaperumal T, et al. Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J Drug Deliv Sci Technol. 2020;56:101502.
  • Huang JL, Chen HZ, Gao XL. Lipid-coated calcium phosphate nanoparticle and beyond: a versatile platform for drug delivery. J Drug Target. 2018;26(5–6):398–406.
  • Tang J, Li L, Howard CB, et al. Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. J Mater Chem B. 2015;3(33):6805–6812.
  • Zhang Y, Kim WY, Huang L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials. 2013;34(13):3447–3458.
  • Yang Y, Hu Y, Wang Y, et al. Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung caner. Mol Pharm. 2012;9(8):2280–2289.
  • Chen D, Zhang F, Wang J, et al. Biodegradable nanoparticles mediated co-delivery of erlotinib (ELTN) and fedratinib (FDTN) toward the treatment of ELTN-resistant non-small cell lung cancer (NSCLC) via suppression of the JAK2/STAT3 signaling pathway. Front Pharmacol. 2018;9:1214.
  • Yadav KS, Jacob S, Sachdeva G, et al. Long circulating PEGylated PLGA nanoparticles of cytarabine for targeting leukemia. J Microencapsul. 2011;28(8):729–742.
  • Mandal B, Mittal NK, Balabathula P, et al. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci. 2016;81:162–171.
  • Chen J, Yang X, Huang L, et al. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy. Drug Deliv. 2018;25(1):1932–1942.
  • Nejati-Koshki K, Mesgari M, Ebrahimi E, et al. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsul. 2014;31(8):815–823.
  • Parvathaneni V, Kulkarni NS, Shukla SK, et al. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics. 2020;12(3):206.
  • Soni G, Yadav KS, Gupta MK. QbD based approach for formulation development of spray dried microparticles of erlotinib hydrochloride for sustained release. J Drug Deliv Sci Technol. 2020;57:101684.
  • Movia D, Bazou D, Volkov Y, et al. Multilayered cultures of NSCLC cells grown at the air-liquid interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep. 2018;8(1):1–9.
  • Dawidczyk CM, Russell LM, Searson PC. Recommendations for benchmarking preclinical studies of nanomedicines. Cancer Res. 2015;75(19):4016–4020.
  • Landgraf M, McGovern JA, Friedl P, et al. Rational design of mouse models for cancer research. Trends Biotechnol. 2018;36(3):242–251.
  • Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1–2.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29.
  • Adrianzen Herrera D, Ashai N, Perez-Soler R, et al. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother. 2019;20(1):95–102.
  • Bertino EM, Williams TM, Nana-Sinkam SP, et al. Stromal caveolin-1 is associated with response and survival in a phase II trial of nab-paclitaxel with carboplatin for advanced NSCLC patients. Clin Lung Cancer. 2015;16(6):466–474.
  • Socinski MA, Manikhas GM, Stroyakovsky DL, et al. A dose finding study of weekly and every-3-week nab-Paclitaxel followed by carboplatin as first-line therapy in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2010;5(6):852–861.
  • Therapeutics B, A study of BIND-014 (Docetaxel nanoparticles for injectable suspension) as second-line therapy for patients with KRAS positive or squamous cell non-small cell lung cancer. [Consultado a 28 de julho de 2019] [cited 2020 Apr 30]. Disponível na Internet. Available from: https://clinicaltrials.gov/ct2/show/NCT,2283320
  • Qiong Zhao NCT02016209. Neoadjuvant chemotherapy of nanoparticle albumin-bound paclitaxel in lung cancer. [cited 2020 Apr 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT02016209?term=NCT02016209&draw=2&rank=1
  • Masonic Cancer Center, NCT00748163. Paclitaxel albumin-stabilized nanoparticle formulation and sunitinib as first-line therapy in treating patients with Stage IV non-small cell lung cancer. [cited 2020 May 14]. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=NCT00748163&cntry=&state=&city=&dist=
  • Nanjing Luye Sike Pharmaceutical Co., Ltd. NCT02996214. Paclitaxel Liposome for Squamous Non-Small-Cell Lung Cancer Study (LIPUSU). [cited 2020 May 25]. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=NCT02996214&cntry=&state=&city=&dist=
  • The First Affiliated Hospital of Guangzhou Medical University, NCT01051362. Pegylated liposomal doxorubicin and carboplatin as first line treatment for patients with advanced non-small cell lung cancer. [cited 2020 Apr 30]. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=NCT01051362

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.