611
Views
37
CrossRef citations to date
0
Altmetric
Review

Metallic nanoparticles as drug delivery system for the treatment of cancer

, ORCID Icon, , , & ORCID Icon
Pages 1261-1290 | Received 15 Sep 2020, Accepted 29 Mar 2021, Published online: 14 Apr 2021

References

  • Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14(10):21087–21113.
  • Fink DJ. Cancer overview. Cancer Res. 1979;39(7 Pt 2):2819–2821.
  • Falzone L, Salomone S, Libra M, et al. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300.
  • Huang Z, Bao SD. Roles of main pro- and anti-angiogenic factors in tumor angiogenesis. World J Gastroenterol. 2004;10(4):463–470.
  • Stumpff J, Ghule PN, Shimamura A, et al. Spindle microtubule dysfunction and cancer predisposition. J Cell Physiol. 2014;229(12):1881–1883.
  • Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–129.
  • Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol. 2016;7(1):54–86.
  • Cancer Statistics. - National Cancer Institute. 2020.
  • Cancer statistics. - National Cancer Institute. 2019.
  • WHO report on cancer. setting priorities, investing wisely and providing care for all. 2020.
  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279–3330.
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • Balis FM. The Goal of Cancer Treatment. Oncologist. 1998;3(4):0.
  • Cheng CT, Castro G, Liu CH, et al. Advanced nanotechnology: an arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta. 2019;492:12–19.
  • Da Silva CG, Rueda F, Löwik CW, et al. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials. 2016;83:308–320.
  • Seebacher NA, Stacy AE, Porter GM, et al. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res. BioMed Central Ltd. 2019;38:1–39.
  • Ahmad MZ, Akhter S, Jain GK, et al. Metallic nanoparticles: technology overview and drug delivery applications in oncology. Expert Opin Drug Deliv. 2010;7(8):927–942.
  • Yaqoob SB, Adnan R, Rameez Khan RM, et al. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem. 2020;8:1–15.
  • Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:1–12.
  • Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2015;7(2):189–217.
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782.
  • Nowak M, Brown TD, Graham A, et al. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng Transl Med. 2020;5(2):e10153.
  • Kang SH, Lee YK, Park IS, et al. Biomimetic gold nanoshell-loaded macrophage for photothermal biomedicine. Biomed Res Int. 2020;2020:5869235.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood - brain barrier using MRI-guided focused ultrasound. J Control Release. 2014;189:123–132.
  • Kennedy JE, Wu F, Ter Haar GR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004;42(1–9):931–935.
  • Jahanban-Esfahlan R, Massoumi B, Abbasian M, et al. Dual stimuli-responsive polymeric hollow nanocapsules as “smart” drug delivery system against cancer. Polym Technol Mater. 2020;59:1492–1504.
  • Jaimes-Aguirre L, Vianey Gibbens-Bandala B, Morales-Avila E, et al. Polymer-based drug delivery systems, development and pre-clinical status. Curr Pharm Des. 2016;22(19):2886–2903.
  • Ahmadi A, Arami S. Potential applications of nanoshells in biomedical sciences. J. Drug Target. J Drug Target. 2014;22(3):175–190.
  • Din F Ud W, Aman A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–7309.
  • Khlebtsov N, Dykmana L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–1671.
  • Johnston HJ, Hutchison G, Christensen FM, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40(4):328–346.
  • Huang C, Hao Y, Nyagilo J, et al. Porous hollow gold nanoparticles for cancer SERS imaging. J Nano Res. 2010;10:137–148.
  • Mody VV, Siwale R, Singh A, et al. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–289.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71.
  • Evans ER, Bugga P, Asthana V, et al. Metallic nanoparticles for cancer immunotherapy. Mater Today. 2018;21(6):673–685.
  • Mansoori B, Mohammadi A, Davudian S, et al. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull. 2017;7(3):339–348.
  • Panigrahi AR, Pinder SE, Chan SY, et al. The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J Pathol. 2004;204(1):93–100.
  • Huang L, Li X, Roberts J, et al. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats. Xenobiotica. 2015;45(6):547–555.
  • Carabia J, Carpio C, Abrisqueta P, et al. Microenvironment regulates the expression of MIR-21 and tumor suppressor genes PTEN, PIAS3 and PDCD4 through ZAP-70 in chronic lymphocytic leukemia. Sci Rep. 2017;7(1):1–10.
  • Sathi GA, Tamamura R, Tsujigiwa H, et al. Analysis of immunoexpression of common cancer stem cell markers in ameloblastoma. Exp Ther Med. 2012;3(3):397–402.
  • Lal S, Link S, Halas NJ. Nano-optics from sensing to waveguiding. Nanosci Technol A Collect Rev from Nat Journals. 2009;1:213–220.
  • Ahn S, Jung SY, Lee SJ. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules. 2013;18(5):5858–5890.
  • Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and BIomedicine. J Phys Chem B. 2006;110(14):7238–7248.
  • Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications☆. Adv Drug Deliv Rev. 2008;60(11):1307–1315.
  • Moorthi C, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14(1):67–77.
  • Caban S, Aytekin E, Sahin A, et al. Nanosystems for drug delivery. OA Drug Des Deliv. 2014;2:1–7.
  • Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc. 2004;126(23):7206–7211.
  • Laurent S, Forge D, Port M, et al. Magnetic Iron Oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–2110.
  • Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 2006;13(4):283–287.
  • Ansari SM, Bhor RD, Pai KR, et al. Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl Surf Sci. 2017;414:171–187.
  • Saha RN, Vasanthakumar S, Bende G, et al. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol. 2010;27(7):215–231.
  • Fam SY, Chee CF, Yong CY, et al. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials. 2020;10(4):787.
  • Shan GS, Liu XM, Chen HJ, et al. Investigation of laser heating effect of metallic nanoparticles on cancer treatment. IOP Conf Ser Mater Sci Eng. 2016;137:012013.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931.
  • Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010;62(3):339–345.
  • Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2018;26(8):617–632.
  • Vines JB, Yoon JH, Ryu NE, et al. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:1–16.
  • Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment (review). Mol Clin Oncol. 2017;7(5):738–746.
  • Drahansky M, Paridah M, Moradbak A, et al. We are IntechOpen, the world ’ s leading publisher of open access books built by scientists, for scientists TOP 1 %. Intech. 2016;i:13.
  • Senturk Dalgic S. Size dependent properties of hollow gold nanoparticles: a theoretical investigation. Acta Phys Pol A. 2016;129(4):531–534.
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine [internet]. J Phys D Appl Phys. 2003;36(13):167–181.
  • Vallée F. Optical properties of metallic nanoparticles. Nanomater Nanochemistry. 2007; 197–227.
  • Yang Z, Sun Z, Ren Y, et al. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (review). Mol Med Rep. 2019;20(1):5–15.
  • Chen X-J, Sanchez-Gaytan BL, Qian Z, et al. Noble metal nanoparticles in DNA detection and delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2012;4(3):273–290..
  • Agarwal A. Optical properties and application of metallic nanoparticles and their assembled. 2010.
  • Venkatesh N. Metallic nanoparticle: a review. Biomed J Sci Tech Res. 2018;4:3765–3775.
  • Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol. 2019;54(2):407–419.
  • Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–1566.
  • Sun C, Veiseh O, Gunn J, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small. 2008;4(3):372–379.
  • Shenoy D, Fu W, Li J, et al. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine. 2006;1(1):51–57.
  • Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech. 2014;15(5):1345–1354.
  • Mortezaee K, Najafi M, Samadian H, et al. Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review. Chem Biol Interact. 2019;312:108814.
  • Dreaden EC, Austin LA, MacKey MA, et al. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3(4):457–478.
  • Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–575.
  • Nichols JW, Yh B. EPR: evidence and fallacy [Internet]. J Control Release. 2014;190:451–464.
  • Khoshnevisan K, Daneshpour M, Barkhi M, et al. The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target. 2018;26(7):525–532.
  • Massoumi B, Abbasian M, Jahanban-Esfahlan R, et al. PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery. Polym Int. 2020;69(5):519–527.
  • Zugazagoitia J, Guedes C, Ponce S, et al., Current challenges in cancer treatment. Clin Ther. 2016;38(7): 1551–1566.
  • Prieto M, Arenal R, Henrard L, et al., Morphological tunability of the plasmonic response: from hollow gold nanoparticles to gold nanorings. J Phys Chem C. 2014;118(49): 28804–28811.
  • Hoshyar N, Gray S, Han H, et al., The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6): 673–692.
  • Chen YC, Huang XC, Luo YL, et al., Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci Technol Adv Mater. 2013;14(4): 44407–44430.
  • Zhao NR, Wang YJ, Chen XF, et al. Preparation of bioactive nanoparticles in the system CaO-P2O5-SiO2 using microemulsions. Key Eng Mater. 2005;288–289:179–182.
  • Tang H, Shen S, Guo J, et al. Gold nanorods@mSiO 2 with a smart polymer shell responsive to heat/near-infrared light for chemo-photothermal therapy. J Mater Chem. 2012;22(31):16095–16103.
  • Fang W, Yang J, Gong J, et al. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv Funct Mater. 2012;22(4):842–848.
  • Liao MY, Wu CH, Lai PS, et al., Surface state mediated NIR two-photon fluorescence of iron oxides for nonlinear optical microscopy. Adv Funct Mater. 2013;23(16): 2044–2051.
  • Lim EK, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev. American Chemical Society. 2015;115:327–394.
  • Li Y, Lin TY, Luo Y, et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun. 2014;5(1):4712.
  • Song X, Gong H, Liu T, et al. J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light. Small. 2014;10(21):4362–4370.
  • Würthner F, Kaiser TE, Saha-Möller CR. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew Chem Int Educ. 2011;50(15):3376–3410.
  • Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–9290.
  • Song X, Zhang R, Liang C, et al. Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials. 2015;57:84–92.
  • Liu TM, Conde J, Lipiński T, et al. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 2016;8(8):1–25.
  • Li F, Zhou X, Zhou H, et al. Reducing both Pgp overexpression and drug efflux with anti-cancer gold-paclitaxel nanoconjugates. PLoS One. 2016;11:1–16.
  • Han P, Martens W, Waclawik ER, et al. Metal nanoparticle photocatalysts: synthesis, characterization, and application. Part. Syst. Charact. 2018;35(6):1–16.
  • Albiter E, Valenzuela MA, Alfaro S, et al. Photocatalytic deposition of Ag nanoparticles on TiO2: metal precursor effect on the structural and photoactivity properties. J Saudi Chem Soc. 2015;19(5):563–573.
  • Á D-G, Diego-González L, Á G-F, et al. Synergistic effect of metal oxide nanoparticles on cell viability and activation of MAP kinases and NFκB. Int J Mol Sci. 2018;19:246.
  • Shittu KO, Bankole MT, Abdulkareem AS, et al. Application of gold nanoparticles for improved drug efficiency. Adv Nat Sci Nanosci Nanotechnol. 2017;8(3):035014.
  • Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38.
  • Veiseh O, Sun C, Fang C, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 2009;69(15):6200–6207.
  • Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14(1):1–16.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.
  • Choi CHJ, Alabi CA, Webster P, et al. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–1240.
  • Paciotti GF, Tamarkin L. Biological and engineering considerations for developing tumor-targeting metallic nanoparticle drug-delivery systems. Nanoparticulate Drug Deliv Syst. CRC Press. 2019;.141–158.
  • Jurašin DD, Ćurlin M, Capjak I, et al. Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein J Nanotechnol. 2016;7:246–262.
  • Van HD, Berlin JM. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles [Internet]. Ther Deliv. 2017;8(9):763–774.
  • Paunovic J, Vucevic D, Radosavljevic T, et al. Effects of metallic nanoparticles on physiological liver functions. Rev Adv Mater Sci. 2017;49:123–128.
  • Perrault SD, Walkey C, Jennings T, et al. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–1915.
  • Li J, Zhao J, Tan T, et al. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomedicine. 2020;15:2563–2582.
  • Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–169.
  • Hirsjarvi S, Passirani C, Benoit J-P. Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol. 2011;8(3):188–196.
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198.
  • Bazak R, Houri M, Achy SEL, et al. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908. .
  • Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb. Exp. Pharmacol. 2010;197:3–53.
  • Wakaskar RR. International Journal of Drug Development Passive and Active Targeting in Tumor Microenvironment. Int. J. Drug Dev. Res. 2017;9:37–41.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951.
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–191.
  • Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1–12.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
  • Navya PN, Kaphle A, Srinivas SP, et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6:23.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.
  • Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm. 2009;6(4):1041–1051.
  • Sultana S, Khan MR, Kumar M, et al. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target. 2013;21(2):107–125.
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146.
  • Huynh NT, Roger E, Lautram N, et al. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine. 2010;5(9):1415–1433.
  • Li Y, Kröger M, Liu WK. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials. 2014;35(30):8467–8478.
  • Choi JS, Park JS. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. Drug Des Devel Ther. 2017;11:17–26.
  • Azizi M, Ghourchian H, Yazdian F, et al. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017;7(1):5178.
  • An FF, Zhang XH. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics. 2017;7(15):3667–3689.
  • Hyun H, Park J, Willis K, et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials. 2018;180:206–224.
  • Guo X, Shi C, Yang G, et al. Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery. Chem Mater. 2014;26(15):4405–4418.
  • Dellian M, Yuan F, Trubetskoy VS, et al. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer. 2000;82(9):1513–1518.
  • Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol. 2003;519:29–49.
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74(1–3):47–61.
  • Li Y, Kröger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale. 2015;7(40):16631–16646.
  • Enrique MA, Mariana OR, Mirshojaei SF, et al. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target. 2015;23(3):191–201.
  • Mirshojaei SF, Ahmadi A, Morales-Avila E, et al. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target. 2016;24(2):91–101.
  • Radović M, Calatayud MP, Goya GF, et al., Preparation and in vivo evaluation of multifunctional 90 Y-labeled magnetic nanoparticles designed for cancer therapy. J Biomed Mater Res - Part A. 2015;103(1): 126–134.
  • Lee W-H, Loo C-Y, Leong C-R, et al. The achievement of ligand-functionalized organic/polymeric nanoparticles for treating multidrug resistant cancer. Expert Opin Drug Deliv. 2017;14(8):937–957.
  • Zhong Y, Meng F, Deng C, et al. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules. 2014;15(6):1955–1969.
  • Mukherjee B, Satapathy B, Mondal L, et al. Potentials and challenges of active targeting at the tumor cells by engineered polymeric nanoparticles. Curr Pharm Biotechnol. 2014;14(15):1250–1263.
  • Bayram B, Ozgur A, Tutar L, et al. Tumor targeting of polymeric nanoparticles conjugated with peptides, saccharides, and small molecules for anticancer drugs. Curr Pharm Des. 2017;23(35):5349–5357.
  • Yoo J, Park C, Yi G, et al. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel). 2019;11(5):640.
  • Bazak R, Houri M, El ACHYS, et al. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908.
  • Elizabeth D, Peter B, Amy G, et al. Beyond the EPR effect: targeting of nanoparticles to pediatric brain tumors. Front Bioeng Biotechnol. 2016;4.
  • Gonda A, Zhao N, Shah JV, et al. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One. 2019;4:e190021.
  • Lynch CC, Hikosaka A, Acuff HB, et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005;7(5):485–496.
  • Huynh NT, Roger E, Lautram N, et al. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine. 2010;5(9):1415–1433.
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–1626.
  • Bogart LK, Pourroy G, Murphy CJ, et al. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano. 2014;8(4):3107–3122.
  • Subhan MA, Torchilin VP. Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res. 2019;214:62–91.
  • Smithies O, Lawrence M, Testen A, et al. Stable oligomeric clusters of gold nanoparticles: preparation, size distribution, derivatization, and physical and biological properties. Langmuir. 2014;30(44):13394–13404.
  • Lok CN, Zou T, Zhang JJ, et al. Controlled-release systems for metal-based nanomedicine: encapsulated/self-assembled nanoparticles of anticancer gold(III)/platinum(II) complexes and antimicrobial silver nanoparticles. Adv Mater. 2014;26(31):5550–5557.
  • Josan JS, Handl HL, Sankaranarayanan R, et al. Cell-specific targeting by heterobivalent ligands. Bioconjug Chem. 2011;22(7):1270–1278.
  • Munoz EM, Correa J, Riguera R, et al. Real-time evaluation of binding mechanisms in multivalent interactions: a surface plasmon resonance kinetic approach. J Am Chem Soc. 2013;135(16):5966–5969.
  • Chen J, Almo SC, Wu Y. General principles of binding between cell surface receptors and multi-specific ligands: a computational study. Morozov A V, editor. PLOS Comput Biol. 2017;13(10):e1005805.
  • Paszko E, Senge MO. Immunoliposomes. Curr Med Chem. 2012;19(31):5239–5277.
  • Toporkiewicz M, Meer J, Matusewicz L, et al. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine. 2015;10:1399–1414.
  • Friedman A, Claypool S, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19(35):6315–6329.
  • Cecioni S, Faure S, Darbost U, et al. Selectivity among two lectins: probing the effect of topology, multivalency and flexibility of “clicked” multivalent glycoclusters. Chem - A Eur J. 2011;17(7):2146–2159.
  • Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102(2):555–578.
  • Kane RS. Thermodynamics of multivalent interactions: influence of the linker. Langmuir. 2010;26(11):8636–8640.
  • Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Educ. 1998;37(20):2754–2794.
  • Ashley CE, Carnes EC, Phillips GK, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater. 2011;10(5):389–397.
  • Zarbock A, Ley K, McEver RP, et al. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow.Blood. 2011;118(26):6743–6751.
  • Wu AM, Yazaki PJ, Tsai SW, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A. 2000;97(15):8495–8500.
  • Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26(10):552–558.
  • Bartlett DW, Su H, Hildebrandt IJ, et al. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(39):15549–15554.
  • Rangel R, Guzman-Rojas L, Le Roux LG, et al. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun. 2012;3(1):1–10.
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198.
  • Clemons TD, Singh R, Sorolla A, et al. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir. 2018;34(50):15343–15349.
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–784.
  • Lin J, Miao L, Zhong G, et al. Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Commun Biol. 2020;3(1):205.
  • Liu Y, Shipton MK, Ryan J, et al. Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal Chem. 2007;79(6):2221–2229.
  • Kester M, Heakal Y, Fox T, et al. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008;8(12):4116–4121.
  • Jiang W, Kim BYS, Rutka JT, et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145–150.
  • Sarangthem V, Kim Y, Singh TD, et al., Multivalent targeting based delivery of therapeutic peptide using AP1-ELP carrier for effective cancer therapy. Theranostics. 2016;6(12): 2235–2249.
  • Chen X, Zhang M, Gan H, et al. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun. 2018;9(1):2949.
  • Cohen G, Burks SR, Frank JA. Chlorotoxin—A multimodal imaging platform for targeting glioma tumors. Toxins (Basel). 2018;10(12):1–12.
  • Dardevet L, Rani D, El Aziz TA, et al. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel). 2015;7(4):1079–1101.
  • Sun C, Veiseh O, Gunn J, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small. 2008;4(3):372–379.
  • Banu H, Sethi DK, Edgar A, et al. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B Biol. 2015;149:116–128.
  • Zeinizade E, Tabei M, Shakeri-Zadeh A, et al. Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1026–1038.
  • Pérez-Hernández M, Del Pino P, Mitchell SG, et al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano. 2015;9(1):52–61.
  • Montazerabadi A, Beik J, Irajirad R, et al. Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol. 2019;47(1):330–340.
  • Movahedi MM, Mehdizadeh A, Koosha F, et al. Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiagnosis Photodyn Ther. 2018;24:324–331.
  • Khademi S, Sarkar S, Shakeri-Zadeh A, et al. Dual-energy CT imaging of nasopharyngeal cancer cells using multifunctional gold nanoparticles. IET Nanobiotechnol. 2019;13(9):957–961.
  • Khademi S, Sarkar S, Shakeri-Zadeh A, et al. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study. Int J Biochem Cell Biol. 2019;114:105554.
  • Tiefenauer LX, Kühne G, Andres RY. Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug Chem. 1993;4(5):347–352.
  • Bulte JWM, Hoekstra Y, Kamman RL, et al. Specific MR imaging of human lymphocytes by monoclonal antibody‐guided dextran‐magnetite particles. Magn Reson Med. 1992;25(1):148–157.
  • Kirpotin D, Park JW, Hong K, et al. Sterically stabilized Anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro†. Biochemistry. 1997;36(1):66–75.
  • Huh YM, Jun YW, Song HT, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc. 2005;127(35):12387–12391.
  • Mrsny R. Active targeting strategies in cancer with a focus on potential nanotechnology applications. Nanotechnol Cancer Ther. 2006; .19–42.
  • Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers (Basel). 2020;12(4):855.
  • Wong OA, Hansen RJ, Ni TW, et al. Structure-activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model. Nanoscale. 2013;5(21):10525–10533.
  • Feliu N, Docter D, Heine M, et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev. 2016;45(9):2440–2457.
  • Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33(4):1107–1119.
  • Terentyuk GS, Maslyakova GN, Suleymanova LV, et al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J Biophotonics. 2009;2(5):292–302.
  • Kattumuri V, Katti K, Bhaskaran S, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333–341.
  • Lee Y, Kim P, Yoon J, et al., Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology. 2013;7(6): 1120–1130.
  • Balfourier A, Luciani N, Wang G, et al., Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc Natl Acad Sci U S A. 2020;117(1): 103–113.
  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–1671.
  • Cho WS, Cho M, Jeong J, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2009;236(1):16–24.
  • Konoeda H, Takizawa H, Gower A, et al. Pharmacokinetics, tissue distribution and safety of gold nanoparticle/PKC Delta inhibitor peptide hybrid in rats. Nanotoxicology. 2020;14(3):341–354.
  • Guo M, Que C, Wang C, et al. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials. 2011;32(1):185–194.
  • Fu C, Liu T, Li L, et al. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–2575.
  • Jenkins JT, Halaney DL, Sokolov KV, et al. Excretion and toxicity of gold-iron nanoparticles. Nanomed Nanotechnol Biol Med. 2013;9(3):356–365.
  • Hauser M, Nowack B. Meta-analysis of pharmacokinetic studies of nanobiomaterials for the prediction of excretion depending on particle characteristics. Front Bioeng Biotechnol. 2019;7:405.
  • Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, et al. Gold nanoparticles: distribution, bioaccumulation and toxicity. vitro and in vivo studies. Nanomedicine Nanotechnology, Biol Med. 2018;14(1):1–12.
  • Sadauskas E, Danscher G, Stoltenberg M, et al. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine. 2009;5(2):162–169.
  • Carlson C, Hussein SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–13619.
  • Kim YS, Kim JS, Cho HS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20(6):575–583.
  • Park K, Park EJ, Chun IK, et al. Bioavailability and Toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res. 2011;34(1):153–158.
  • Lankveld DPK, Oomen AG, Krystek P, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. 2010;31(32):8350–8361.
  • Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, et al. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol. 2012;32:920–928.
  • Lee JH, Sung JH, Ryu HR, et al. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018;92(4):1393–1405.
  • Loeschner K, Hadrup N, Qvortrup K, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8.18. DOI: 10.1186/1743-8977-8-18.
  • Xue Y, Zhang S, Huang Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012;32(11):890–899.
  • Mao BH, Chen ZY, Wang YJ, et al. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8(1):1–16.
  • Hadrup N, Lam HR. Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol. 2014;68(1):1–7.
  • Pem B, Pongrac IM, Ulm L, et al. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. Beilstein J Nanotechnol. 2019;10:1802–1817.
  • Recordati C, De Maglie M, Bianchessi S, et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol. 2016;13(1):12.
  • Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, et al. Time-dependent biodistribution and excretion of silver nanoparticles in male wistar rats. J Appl Toxicol. 2012;32(11):920–928.
  • Spencer AP, Torrado M, Custódio B, et al. Breaking barriers: bioinspired strategies for targeted neuronal delivery to the central nervous system. Pharmaceutics. 2020;12(2):192.
  • Van Der Zande M, Vandebriel RJ, Van Doren E, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–7442.
  • Akter M, Sikder MT, Rahman MM, et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2018;9:1–16.
  • Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008;66(2):274–280.
  • Gerber A, Bundschuh M, Klingelhofer D, et al. Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol. 2013;8(1):32.
  • Bailly AL, Correard F, Popov A, et al. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep. 2019;9(1):1–12.
  • Kong B, Seog JH, Graham LM, et al. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 2011;6(5):929–941.
  • Zhang X-D, Wu D, Shen X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33(18):4628–4638.
  • Raftis JB, Miller MR. Nanoparticle translocation and multi-organ toxicity: a particularly small problem. Nano Today. 2019;26:8–12.
  • Sabella S, Galeone A, Vecchio G. AuNPs are toxic in vitro and in vivo: a review. J Nanosci Lett. 2011;1:145–165.
  • Yah CS. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res. 2013;24:400–413.
  • Semmler-Behnke M, Kreyling WG, Lipka J, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4(12):2108–2111.
  • Sonavane G, Tomoda K, Sano A, et al. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65(1):1–10.
  • De Jong WH, Hagens WI, Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–1919.
  • Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375.
  • Mortezaee K, Najafi M, Samadian H, et al. Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review. Chem Biol Interact. 2019;312:108814.
  • Azarnezhad A, Samadian H, Jaymand M, et al. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? [Internet]. Crit Rev Toxicol. 2020;50(2):148–176.
  • Barabadi H, Najafi M, Samadian H, et al. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Med. 2019;55:439.
  • Xia Q, Li H, Liu Y, et al. The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res - Part A. 2017;105(3):710–719.
  • Plotnikov E, Zhuravkov S, Gapeyev A, et al. Investigation of genotoxicity of gold nanoparticles prepared by the electric spark dispersion method. Adv Mater Res. 2014;1040:65–69.
  • Nie S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Sci (80-). 1997;275(5303):1102–1106.
  • Neddersen J, Chumanov G, Cotton TM. Laser ablation of metals: a new method for preparing SERS active colloids. Appl Spectrosc. 1993;47(12):1959–1964.
  • Cole LE, Ross RD, Tilley JM, et al. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine. 2015;10(2):321–341.
  • Cai W. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32.
  • Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149(1):65–71.
  • Norouzi M. Gold nanoparticles in glioma theranostics. Pharmacol Res. 2020;156:104753. Academic Press.
  • Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, et al. Brain targeted gold liposomes improve rnai delivery for glioblastoma. Int J Nanomedicine. 2020;15:2809–2828.
  • Joshi PP, Yoon SJ, Hardin WG, et al. Conjugation of antibodies to gold nanorods through fc portion: synthesis and molecular specific imaging. Bioconjug Chem. 2013;24(6):878–888.
  • Kim S, Chen Y-S, Luke GP, et al. In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery. Biomed Opt Express. 2011;2(9):2540.
  • Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–347.
  • Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res. 2000;51(3):293–298.
  • Lasic DD, Needham D. The “Stealth” liposome: a prototypical biomaterial. Chem Rev. 1995;95(8):2601–2628.
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–579.
  • Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. 1994;0(7):801–802.
  • Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41(12):1587–1595. .
  • Fang C, Wang K, Stephen ZR, et al. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Interfaces. 2015;7(12):6674–6682. .
  • Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132(13):4678–4684. .
  • Farooq MU, Novosad V, Rozhkova EA, et al. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to hela cells. Sci Rep. 2018;8(1):1–12. .
  • Kwon YM, Je JY, Cha SH, et al. Synergistic combination of chemo‑phototherapy based on temozolomide/ICG‑loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep. 2019;42(5):1709–1724. .
  • Irani M, Mir Mohamad Sadeghi G, Haririan I. A novel biocompatible drug delivery system of chitosan/temozolomide nanoparticles loaded PCL-PU nanofibers for sustained delivery of temozolomide. Int J Biol Macromol. 2017;97:744–751.
  • Gao Y, Torrente-Murciano L. Mechanistic insights of the reduction of gold salts in the turkevich protocol. Nanoscale. 2020;12(4):2740–2751.
  • Amado FR. Masterplan cultural para o bahrain. 2011;7:753–763.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–22.
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold [internet]. Discuss Faraday Soc. 1951;11:55–75.
  • Cunnane VJ, Schiffrin DJ, Beltran C, et al. The role of phase transfer catalysts in two phase redox reactions. J Electroanal Chem. 1988;247(1–2):203–214.
  • Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir. 1999;15(11):3782–3789.
  • Laibinis PE, Nuzzo RG, Whitesides GM. Structure of monolayers formed by coadsorption of two n-alkanethiols of different chain lengths on gold and its relation to wetting. J Phys Chem. 1992;96(12):5097–5105.
  • Massoumi B, Farnudiyan‐Habibi A, Derakhshankhah H, et al. A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against cancer. Drug Dev Ind Pharm. 2020;46(11):1832.
  • Samadian H, Mohammad-Rezaei R, Jahanban-Esfahlan R, et al. A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. J Mater Res. 2020;35(4):430–441.
  • Moloudi K, Samadian H, Jaymand M, et al. Iron oxide/gold nanoparticles-decorated reduced graphene oxide nanohybrid as the thermo-radiotherapy agent. IET Nanobiotechnol. 2020;14(5):428–432.
  • Huang X, Jain PK, El-Sayed IH, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23(3):217–228.
  • Pedrosa P, Corvo ML, Ferreira-Silva M, et al. Targeting cancer resistance via multifunctional gold nanoparticles. Int J Mol Sci. 2019;20(21):5510.
  • Pedrosa P, Mendes R, Cabral R, et al. Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells. Sci Rep. 2018;8(1):1–8.
  • Roma-Rodrigues C, Pombo I, Fernandes AR, et al. Hyperthermia induced by gold nanoparticles and visible light photothermy combined with Chemotherapy to Tackle Doxorubicin sensitive and resistant colorectal tumor 3D spheroids. Int J Mol Sci. 2020;21(21):8017.
  • Klar T, Perner M, Grosse S, et al. Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett. 1998;80(19):4249–4252.
  • Dulkeith E, Niedereichholz T, Klar T, et al. Plasmon emission in photoexcited gold nanoparticles. Phys Rev B. 2004;70(20):205424.
  • El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34(4):257–264.
  • Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–711.
  • Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater. 2004;16(19):3633–3640.
  • Ai SHERMAN, Ter-pogossian M. Lymph-node concentration of radioactive colloidal gold following interstitial injection. Cancer. 1953;6(6):1238–1240.
  • Rayavarapu RG, Petersen W, Hartsuiker L, et al. In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology. 2010;21(14):145101.
  • Kabashin A. Plasmonics nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867–871.
  • Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7(7):1929–1934.
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci. 2005;94(10):2135–2146.
  • Tong L, Wei Q, Wei A, et al. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol. Internet]. 2009 [cited 2019 Jun 26];85:21–32. Available from ;(1):. http://www.ncbi.nlm.nih.gov/pubmed/19161395.
  • Huff TB, Hansen MN, Zhao Y, et al. Controlling the cellular uptake of gold nanorods. Langmuir. 2007;23(4):1596–1599.
  • Chen Y, Bian X, Aliru M, et al. Hypoxia-targeted gold nanorods for cancer photothermal therapy. Oncotarget. 2018;9(41):26556.
  • Ren QQ, Bai LY, Zhang XS, et al. Preparation, modification, and application of hollow gold nanospheres. J Nanomater. 2015;6:1–7.
  • Setua S, Ouberai M, Piccirillo SG, et al. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale. 2014;6(18):10865–10873.
  • Farjami Shayesteh S, Saie M. The effect of surface plasmon resonance on optical response in dielectric (core)-metal (shell) nanoparticles. Indian Acad Sci. 2015;85:1245–1255.
  • Hirsch L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci. 2003;100(23):13549–13554.
  • Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–711.
  • Shanbah PP, Iyer V, Shetty T. Gold nanoshells: a ray of hope in cancer diagnosis and treatment. Nucl Med Biomed Imaging 2. 2017;2:1–5.
  • Wang Y. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004;4(9):1689–1692.
  • Stern JM, Stanfield J, Lotan Y, et al. Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol. 2007;21(8):939–943.
  • Cobley CM, Au L, Chen J, et al. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin Drug Deliv. 2010;7(5):577–587.
  • Ngwa W, Kumar R, Sridhar S, et al. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine. 2014;9(7):1063–1082.
  • Paciotti GF, Myer L, Weinreich D, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv J Deliv Target Ther Agents. 2004;11:169–183.
  • S Jain DHJO. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–113.
  • Dreaden EC, Alkilany AM, Huang X, et al. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–2779.
  • Joyce C, Fothergill SM, Xie F. Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Mater. Today Adv.. 2020;7: 100073.
  • Sylvestre JP, Poulin S, Kabashin AV, et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108:16864–16869.
  • Alkilany AM, Nagaria PK, Hexel CR, et al. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009;5(6):701–708.
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327.
  • Haume K. Gold nanoparticles for cancer radiotherapy: a review, cancer. Nano. 2016;7:8.
  • Schwartzberg AM, Olson TY, Talley CE, et al. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres †. J Phys Chem B. 2006;110(40):19935–19944.
  • Tsai C-Y, Lu S-P, Lin J-W, et al. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl Phys Lett. 2011;98(15):153108.
  • Mahmoud MA, Garlyyev B, El-Sayed MA. Determining the mechanism of solution metallic nanocatalysis with solid and hollow nanoparticles: homogeneous or heterogeneous. J Phys Chem C. 2013;117(42):21886–21893.
  • Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther. 2008;7(6):1730–1739.
  • Lu W, Huang Q, Ku G, et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials. 2010;31(9):2617–2626.
  • Tong L, Cobley CM, Chen J, et al. Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew Chem Int Educ. 2010;49(20):3485–3488.
  • Schwartzberg AM, Olson TY, Talley CE, et al. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres†. J Phys Chem B. 2006;110(40):19935–19944.
  • Jenkins SV, Gohman TD, Miller EK, et al. Synthesis of hollow gold-silver alloyed nanoparticles: a “Galvanic Replacement” experiment for chemistry and engineering students. J Chem Educ. 2015;92(6):1056–1060.
  • Preciado-Flores S, Wang D, Wheeler DA, et al. Highly reproducible synthesis of hollow gold nanospheres with near infrared surface plasmon absorption using PVP as stabilizing agent. J Mater Chem. 2011;21(7):2344–2350.
  • Hu T, Lin Y, Yan J, et al. Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2013;110:72–77.
  • Liang HP, Wan LJ, Bai CL, et al. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J Phys Chem B. 2005;109(16):7795–7800.
  • Lu W, Xiong C, Zhang G, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009;15(3):876–886.
  • You J, Zhang R, Zhang G, et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J Control Release. 2012;158(2):319–328.
  • You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano. 2010;4(2):1033–1041.
  • Imanparast A, Bakhshizadeh M, Salek R, et al. Pegylated hollow gold-mitoxantrone nanoparticles combining photodynamic therapy and chemotherapy of cancer cells. Photodiagnosis Photodyn Ther. 2018;23:295–305.
  • Abdollahi SN, Naderi M, Amoabediny G. Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates. Colloids Surf A Physicochem Eng Asp. 2013;436: 1069–1075.
  • Kohler N, Sun C, Wang J, et al. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 2005;21(19):8858–8864.
  • Adams S, Thai D, Mascona X, et al. Key factors affecting the reproducibility of synthesis and growth mechanism of near-infrared absorbing hollow gold nanospheres. Chem Mater. 2014;26(23):6805–6810.
  • Guo M, He J, Li Y, et al. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J Hazard Mater. 2016;310:89–97.
  • Olson TY, Schwartzberg AM, Orme CA, et al. Hollow gold-silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. J Phys Chem C. 2008;112(16):6319–6329.
  • Baygazieva EK, Yesmurzayeva NN, Tatykhanova GS, et al. Polymer protected gold nanoparticles: synthesis, characterization and application in catalysis. Int J Biol Chem. 2014;7(1):14–23.
  • Zhang X-F, Liu Z-G, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.
  • Benyettou F, Rezgui R, Ravaux F, et al. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J Mater Chem B. 2015;3(36):7237–7245.
  • Chen H, Liu Y, Zhao G. Synthesis and characterization of hollow silver spheres at room temperature. Electron Mater Lett. 2011;7(2):151–154.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):1–16.
  • Mullard A. FDA approves landmark RNAi drug. Nat Rev Drug Discov. 2018;17:613.
  • Mullard A. FDA approves landmark tissue-agnostic cancer drug. Nat Rev Drug Discov. 2018;18:7.
  • Doxil® BY. - The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Saving Patients’ Lives Medical B.V. Ferumoxtran-10-enhanced MRI in Prostate Cancer Patients. 2020; Feb 10, 2020- Nov 9, 2020. Identifier-NCT04261777.
  • National Cancer Institute. NU-0129 in Treating Patients With Recurrent Glioblastoma or Gliosarcoma Undergoing Surgery. Clin. U.S. Natl. Libr. Med. 2017; Jan 13, 2017- Oct 27, 2020. Identifier- NCT03020017.
  • A Study to Evaluate the Safety. Tolerability and Immunogenicity of EGFR(V)-EDV-Dox in Subjects With Recurrent Glioblastoma Multiforme (GBM). 2016; May 10, 2016- Aug 29, 2019. Identifier- NCT02766699.
  • National Library of Medicine (US). Pilot Study of AuroLase(tm) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck. 2017; July 18, 2016- Feb 9, 2017. Identifier- NCT00848042.
  • Donaldson L. ‘Cornell Dots’ receive approval for clinical trials. Mater Today. 2011;14(4):131.
  • Gustave Roussy Grand Paris|National Cancer Institute, France CC. AGuIX Gadolinium-based Nanoparticles in Combination With Chemoradiation and Brachytherapy. 2019; May 17, 2018-May-21. Identifier- NCT03308604.
  • Verry C, Sancey L, Dufort S, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open. 2019; (2):9.e023591. DOI:10.1136/bmjopen-2018-023591.
  • US National Library of Medicine. History of Changes for Study: NCT01713764. 2013; 6–8.
  • GE Healthcare. Post-marketing Safety Study in Participants of All Pathologies Who Receive Gadolinium-Based Contrast Agents (GBCAs) for Contrast-Enhanced Magnetic Resonance Imaging (MR) Examination. 2018; Mar 6, 2018- Dec 4, 2019. Identifier- NCT03455283.
  • Bonvalot S, Rutkowski PL, Thariat J, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148–1159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.