341
Views
0
CrossRef citations to date
0
Altmetric
Review

Mucoadhesive drug delivery systems: a promising non-invasive approach to bioavailability enhancement. Part I: biophysical considerations

, &
Pages 395-412 | Received 26 Sep 2022, Accepted 13 Feb 2023, Published online: 21 Feb 2023

References

  • Jiménez-castellanos MR, Zia H, Rhodes CT. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1993;19(1–2):143–194.
  • Edsman K, Hägerström H. Pharmaceutical applications of mucoadhesion for the non-oral routes. J Pharm Pharmacol. 2005;57(1):3–22.
  • Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–1568.
  • Zizzari AT, Pliatsika D, Gall FM, et al. New perspectives in oral peptide delivery. Drug Discov Today. 2021;26(4):1097–1105.
  • Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–518.
  • Shaikh R, Raj Singh TR, Garland MJ, et al. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.
  • Hägerström H, CAS B, Edsman K. The importance of gel properties for mucoadhesion measurements: a multivariate data analysis approach. J Pharm Pharmacol. 2004;56(2):161–168.
  • Lu Y, Park K. Appendix F - chapter II.5.16 — drug delivery systems: h, mucosal drug delivery. In: Ratner BD, Hoffman AS, Schoen FJ, editors. Biomaterials Science (Third Edition). United States: Academic Press; 2013. p. 1510–1518.
  • Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018;124:3–15.
  • Woertz C, Preis M, Breitkreutz J, et al. Assessment of test methods evaluating mucoadhesive polymers and dosage forms: an overview. Eur J Pharm Biopharm. 2013;85(3):843–853.
  • Hafez ES. Functional anatomy of mucus-secreting cells. Adv Exp Med Biol. 1977;89:19–38.
  • Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–764.
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.
  • Kumar A, Naik PK, Pradhan D, et al. Mucoadhesive formulations: innovations, merits, drawbacks, and future outlook. Pharm Dev Technol. 2020;25(7):797–814.
  • Elphick DA, Mahida YR. Paneth cells: their role in innate immunity and inflammatory disease. Gut. 2005;54(12):1802–1809.
  • Granger DN, Kvietys PR. Circulation, Overview. In: johnson LR, editor. In: Encyclopedia of gastroenterology.New York: Elsevier. 2004; p. 351–355.
  • Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011;92(4):219–231.
  • Helander HF, Fändriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol. 2014;49(6):681–689.
  • Yang X, Forier K, Steukers L, et al. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking. PLoS One. 2012;7(12):e51054.
  • Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–275.
  • Strous GJ, Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol. 1992;27(1–2):57–92.
  • Mortazavi SA, Carpenter BG, Smart JD. A comparative study on the role played by mucus glycoproteins in the rheological behaviour of the mucoadhesive/mucosal interface. Int J Pharm. 1993;94(1):195–201.
  • Lai SK, Wang YY, Wirtz D, et al. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61(2):86–100.
  • Creeth JM. Constituents of mucus and their separation. Br Med Bull. 1978;34(1):17–24.
  • Modi J, Joshi G, Sawant K. Chitosan based mucoadhesive nanoparticles of ketoconazole for bioavailability enhancement: formulation, optimization, in vitro and ex vivo evaluation. Drug Dev Ind Pharm. 2013;39(4):540–547.
  • He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166(1):75–88.
  • Lehr C-M, Boddé HE, Bouwstra JA, et al. A surface energy analysis of mucoadhesion II. Prediction of mucoadhesive performance by spreading coefficients. Eur J Pharmaceut Sci. 1993;1(1):19–30.
  • Peppas NA, Thomas JB, McGinty J. Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J Biomater Sci Polym Ed. 2009;20(1):1–20.
  • Smart JD. Theories of Mucoadhesion. In: Khutoryanskiy, V, editor. Mucoadhesive materials and drug delivery systems. United Kingdom: John Wiley & Sons Ltd. 2014. p. 159–174.
  • Singla AK, Chawla M, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm. 2000;26(9):913–924.
  • Mortazavi SA, Smart JD. An investigation of some factors influencing the in vitro assessment of mucoadhesion. Int J Pharm. 1995;116(2):223–230.
  • Alhalaweh A, Vilinska A, Gavini E, et al. Surface thermodynamics of mucoadhesive dry powder formulation of zolmitriptan. AAPS PharmSciTech. 2011;12(4):1186–1192.
  • Zhang Q, Li X, Jasti BR. Role of physicochemical properties of some grades of hydroxypropyl methylcellulose on in vitro mucoadhesion. Int J Pharm. 2021;609:121218.
  • Jabbari E, Wisniewski N, Peppas NA. Evidence of mucoadhesion by chain interpenetration at a poly (acrylic acid)/mucin interface using ATR-FTIR spectroscopy. J Control Release. 1993;26(2):99–108.
  • Mortazavi SA, Smart JD. An investigation into the role of water movement and mucus gel dehydration in mucoadhesion. J Control Release. 1993;25(3):197–203.
  • Sriamornsak P, Wattanakorn N, Takeuchi H. Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydr Polym. 2010;79(1):54–59.
  • Jintapattanakit A, Junyaprasert VB, Kissel T. The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci. 2009;98(12):4818–4830.
  • Puri V, Sharma A, Kumar P, et al. Thiolation of biopolymers for developing drug delivery systems with enhanced mechanical and mucoadhesive properties: a review. Polymers. 2020;12(8):1803.
  • Yoo J-W, Dharmala K, Lee CH. The physicodynamic properties of mucoadhesive polymeric films developed as female controlled drug delivery system. Int J Pharm. 2006;309(1):139–145.
  • Fanse S, Bao Q, Zou Y, et al. Effect of crosslinking on the physicochemical properties of polydimethylsiloxane-based levonorgestrel intrauterine systems. Int J Pharm. 2021;609:121192.
  • Sriamornsak P, Wattanakorn N, Nunthanid J, et al. Mucoadhesion of pectin as evidence by wettability and chain interpenetration. Carbohydr Polym. 2008;74(3):458–467.
  • Madsen F, Eberth K, Smart JD. A rheological assessment of the nature of interactions between mucoadhesive polymers and a homogenised mucus gel. Biomaterials. 1998;19(11):1083–1092.
  • Bassi da Silva J, Ferreira S, de Freitas O, et al. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm. 2017;43(7):1053–1070.
  • Sotres J, Jankovskaja S, Wannerberger K, et al. Ex-vivo force spectroscopy of intestinal mucosa reveals the mechanical properties of mucus blankets. Sci Rep. 2017;7(1):7270.
  • Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9(7):1837–1842.
  • Craig DQM, Tamburić S, Buckton G, et al. An investigation into the structure and properties of Carbopol 934 gels using dielectric spectroscopy and oscillatory rheometry. J Control Release. 1994;30:213–223.
  • Bappaditya Chatterjee NA, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: a recent update. J Applied Pharm Science. 2017;7(5):195–203.
  • Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56(2):207–214.
  • Bernkop-Schnürch A, Steininger S. Synthesis and characterisation of mucoadhesive thiolated polymers. Int J Pharm. 2000;194(2):239–247.
  • Luo Q, Han Q, Wang Y, et al. The thiolated chitosan: synthesis, gelling and antibacterial capability. Int J Biol Macromol. 2019;139:521–530.
  • Thiomers: B-SA. A new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569–1582.
  • Knoll P, Le N-MN, Wibel R, et al. Thiolated pectins: in vitro and ex vivo evaluation of three generations of thiomers. Acta Biomater. 2021;135:139–149.
  • Grosso R, de-Paz M-V. Thiolated-polymer-based nanoparticles as an avant-garde approach for anticancer therapies—reviewing thiomers from chitosan and hyaluronic acid. Pharmaceutics. 2021;13(6):854.
  • Lehr CM. Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release. 2000;65(1–2):19–29.
  • Wijetunge SS, Wen J, Yeh C-K, et al. Lectin-conjugated liposomes as biocompatible, bioadhesive drug carriers for the management of oral ulcerative lesions. ACS Appl Bio Mater. 2018;1(5):1487–1495.
  • Long P, Zhang Q, Xue M, et al. Tomato lectin-modified nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine: targeting intestinal M cells following peroral administration. Biomed Pharmacother. 2019;115:108886.
  • Duchěne D, Ponchel G. Principle and investigation of the bioadhesion mechanism of solid dosage forms. Biomaterials. 1992;13(10):709–714.
  • Ensign LM, Tang BC, Wang -Y-Y, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79–138ra79.
  • Netsomboon K, Bernkop-Schnürch A, Mucoadhesive V. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm. 2016;98:76–89.
  • Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat Commun. 2021;12(1):1689.
  • Bonengel S, Prüfert F, Perera G, et al. Polyethylene imine-6-phosphogluconic acid nanoparticles – a novel zeta potential changing system. Int J Pharm. 2015;483(1):19–25.
  • Köllner S, Dünnhaupt S, Waldner C, et al. Mucus permeating thiomer nanoparticles. Eur J Pharm Biopharm. 2015;97:265–272.
  • Smart JD, Kellaway IW, Worthington HEC. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacol. 1984;36(5):295–299.
  • Sau-Hung Spence L, Robinson JR. The contribution of anionic polymer structural features to mucoadhesion. J Control Release. 1987;5(3):223–231.
  • Semwal R, Semwal R, Semwal D. Mucoadhesive assessment – an encyclopedic review. 2018;2: Art.ID 187.
  • Eouani C, Piccerelle P, Prinderre P, et al. In-vitro comparative study of buccal mucoadhesive performance of different polymeric films. Eur J Pharm Biopharm. 2001;52(1):45–55.
  • Tamburic S, Craig DQM. A comparison of different in vitro methods for measuring mucoadhesive performance. Eur J Pharm Biopharm. 1997;44(2):159–167.
  • Thirawong N, Nunthanid J, Puttipipatkhachorn S, et al. Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer. Eur J Pharm Biopharm. 2007;67(1):132–140.
  • Amorós-Galicia L, Nardi-Ricart A, Verdugo-González C, et al. Development of a standardized method for measuring bioadhesion and mucoadhesion that is applicable to various pharmaceutical dosage forms. Pharmaceutics. 2022;14:10.
  • Grabovac V, Guggi D, Bernkop-Schnürch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev. 2005;57(11):1713–1723.
  • Lam HT, Zupančič O, Laffleur F, et al. Mucoadhesive properties of polyacrylates: structure – function relationship. Int J Adhes Adhes. 2021;107:102857.
  • Hong Z, Chasan B, Bansil R, et al. Atomic force microscopy reveals aggregation of gastric mucin at low pH. Biomacromolecules. 2005;6(6):3458–3466.
  • Kappl M, Butt H-J. The colloidal probe technique and its application to adhesion force measurements. Part Part Syst Charact. 2002;19(3):129–143.
  • Joergensen L, Klösgen B, Simonsen AC, et al. New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR. Int J Pharm. 2011;411(1):162–168.
  • Graça A, Gonçalves LM, Raposo S, et al. Useful in vitro techniques to evaluate the mucoadhesive properties of hyaluronic acid-based ocular delivery systems. Pharmaceutics. 2018;10(3):110.
  • Rossi S, Vigani B, Bonferoni MC, et al. Rheological analysis and mucoadhesion: a 30 year-old and still active combination. J Pharm Biomed Anal. 2018;156:232–238.
  • Dave RS, Goostrey TC, Ziolkowska M, et al. Ocular drug delivery to the anterior segment using nanocarriers: a mucoadhesive/mucopenetrative perspective. J Control Release. 2021;336:71–88.
  • Sun X, Sheng Y, Li K, et al. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater. 2022;138:193–207.
  • Ahuja A, Khar RK, Ali J. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1997;23(5):489–515.
  • Preisig D, Roth R, Tognola S, et al. Mucoadhesive microparticles for local treatment of gastrointestinal diseases. Eur J Pharm Biopharm. 2016;105:156–165.
  • Ding D, Kundukad B, Somasundar A, et al. Design of mucoadhesive PLGA microparticles for ocular drug delivery. ACS Appl Bio Mater. 2018;1(3):561–571.
  • Bá S, Mammadova A, Gyarmati B, et al. Mucoadhesive interactions between synthetic polyaspartamides and porcine gastric mucin on the colloid size scale. Colloids Surf B Biointerfaces. 2020;194:111219.
  • Shen J, Wang Y, Ping Q, et al. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release. 2009;137(3):217–223.
  • Surface Plasmon BR. Resonance spectroscopy: a versatile technique in a biochemist’s toolbox. J Chem Educ. 2013;90(2):203–209.
  • Ivarsson D, Wahlgren M. Comparison of in vitro methods of measuring mucoadhesion: ellipsometry, tensile strength and rheological measurements. Colloids Surf B Biointerfaces. 2012;92:353–359.
  • Ways TMM, Lau WM, Ng KW, et al. Synthesis of thiolated, PEGylated and POZylated silica nanoparticles and evaluation of their retention on rat intestinal mucosa in vitro. Eur J Pharm Sci. 2018;122:230–238.
  • Takeuchi H, Thongborisute J, Matsui Y, et al. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005;57(11):1583–1594.
  • Surya R, Mullassery MD, Fernandez NB, et al. Synthesis and characterization of a pH responsive and mucoadhesive drug delivery system for the controlled release application of anti-cancerous drug. Arabian J Chem. 2020;13(5):5262–5276.
  • Thongborisute J, Takeuchi H. Evaluation of mucoadhesiveness of polymers by BIACORE method and mucin-particle method. Int J Pharm. 2008;354(1):204–209.
  • Patel VF, Liu F, Brown MB. Modeling the oral cavity: in vitro and in vivo evaluations of buccal drug delivery systems. J Control Release. 2012;161(3):746–756.
  • Kulkarni U, Mahalingam R, Pather I, et al. Porcine buccal mucosa as in vitro model: effect of biological and experimental variables. J Pharm Sci. 2010;99(3):1265–1277.
  • Thirion-Delalande C, Gervais F, Fisch C, et al. Comparative analysis of the oral mucosa from rodents and non-rodents: application to the nonclinical evaluation of sublingual immunotherapy products. PLoS One. 2017;12(9):e0183398–e0183398.
  • Nair AB, Sreeharsha N, Al-Dhubiab BE, et al. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of sitagliptin: optimization and in vivo evaluation in rats. Materials. 2019;12(24):4239.
  • Xu J, Tam M, Samaei S, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017;48:247–257.
  • Dhaliwal S, Jain S, Singh HP, et al. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. AAPS J. 2008;10(2):322–330.
  • Joshi S, Kumar S, Bafna S, et al. Genetically engineered mucin mouse models for inflammation and cancer. Cancer Metastasis Rev. 2015;34(4):593–609.
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–570.
  • Cryan S-A, Sivadas N, Garciacontreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev. 2007;59(11):1133–1151.
  • Hall DJ, Khutoryanskaya OV, Khutoryanskiy VV. Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems [10.1039/C1SM05929G]. Soft Matter. 2011;7(20):9620–9623.
  • Shan W, Zhu X, Liu M, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano. 2015;9(3):2345–2356.
  • Razafindratsita A, Saint-Lu N, Mascarell L, et al. Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. J Allergy Clin Immunol. 2007;120(2):278–285.
  • Baus RA, Zahir-Jouzdani F, Dünnhaupt S, et al. Mucoadhesive hydrogels for buccal drug delivery: in vitro-in vivo correlation study. Eur J Pharm Biopharm. 2019;142:498–505.
  • Zimmermann ES, Ferreira LM, Denardi LB, et al. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis. Eur J Pharm Sci. 2021;167:106011.
  • Sadio A, Amaral AL, Nunes R, et al. A mouse intra-intestinal infusion model and its application to the study of nanoparticle distribution [methods]. Front Physiol. 2016;7:579.
  • Charlton ST, Davis SS, Illum L. Nasal administration of an angiotensin antagonist in the rat model: effect of bioadhesive formulations on the distribution of drugs to the systemic and central nervous systems. Int J Pharm. 2007;338(1):94–103.
  • Kesavan K, Kant S, Singh PN, et al. Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: in vitro and in vivo evaluation. Curr Eye Res. 2013;38(3):342–352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.