220
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanotechnology-enabled gene delivery for cancer and other genetic diseases

, , &
Pages 523-540 | Received 22 Aug 2022, Accepted 04 Apr 2023, Published online: 10 Apr 2023

References

  • NALDINI L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351–360.
  • BURNETT JC, ROSSI JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19(1):60–71.
  • MUHONEN P, HOLTHOFER H. Bioinformatic approaches to siRNA selection and optimization. Methods Mol Biol. 2010;623:93–107.
  • BESSIS N, GARCIACOZAR FJ, BOISSIER MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Genet Ther. 2004;11 Suppl 1:S10–7.
  • BAUM C, KUSTIKOVA O, MODLICH U, et al. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17(3):253–263. DOI:10.1089/hum.2006.17.253
  • YIN H, KANASTY RL, ELTOUKHY AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555. DOI:10.1038/nrg3763
  • DAKA A, PEER D. Rnai-based nanomedicines for targeted personalized therapy. Adv Drug Delivery Rev. 2012;64(13):1508–1521.
  • KANASTY R, DORKIN JR, VEGAS A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–977. DOI:10.1038/nmat3765
  • KIM HJ, KIM A, MIYATA K, et al. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Delivery Rev. 2016;104:61–77.
  • MORITA K, HASEGAWA C, KANEKO M, et al. 2’-O,4’-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett. 2002;12(1):73–76. DOI:10.1016/S0960-894X(01)00683-7
  • SETH PP, VASQUEZ G, ALLERSON CA, et al. Synthesis and biophysical evaluation of 2‘,4’-constrained 2‘O-methoxyethyl and 2‘,4’-constrained 2‘O-ethyl nucleic acid analogues. J Org Chem. 2010;75(5):1569–1581. DOI:10.1021/jo902560f
  • PRAKASH TP. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodivers. 2011;8(9):1616–1641.
  • Ku SH, Jo SD, Lee YK, et al. Chemical and structural modifications of RNAi therapeutics. Adv Drug Delivery Rev. 2016;104:16–28.
  • WHITEHEAD KA, DAHLMAN JE, LANGER RS, et al. Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng. 2011;2:77–96.
  • GARBER K. Worth the RISC? Nature Biotechnol. 2017;35(3):198–202.
  • LI SD, HUANG L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.
  • HUANG Y, HONG J, ZHENG S, et al. Elimination pathways of systemically delivered siRNA. Mol Ther. 2011;19(2):381–385. DOI:10.1038/mt.2010.266
  • VAN DE Water FM, BOERMAN OC, WOUTERSE AC, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–1397. DOI:10.1124/dmd.106.009555
  • GEARY RS, NORRIS D, YU R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Delivery Rev. 2015;87:46–51.
  • PARDRIDGE WM. The blood-brain barrier and neurotherapeutics. NeuroRx. 2005;2(1):1–2.
  • BANKS WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–292.
  • MIAO L, NEWBY JM, LIN CM, et al. The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano. 2016;10(10):9243–9258. DOI:10.1021/acsnano.6b02776
  • DILNAWAZ F, SINGH A, MEWAR S, et al. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials. 2012;33(10):2936–2951. DOI:10.1016/j.biomaterials.2011.12.046
  • TARASOV VV, CHUBAREV VN, ASHRAF GM, et al. How cancer cells resist chemotherapy: design and development of drugs targeting protein-protein interactions. Curr Top Med Chem. 2019;19(6):394–412. DOI:10.2174/1568026619666190305130141
  • MITCHELL MJ, BILLINGSLEY MM, HALEY RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. DOI:10.1038/s41573-020-0090-8
  • SHU SA, WANG J, TAO MH, et al. Gene therapy for autoimmune disease. Clin Rev Allergy Immunol. 2015;49(2):163–176. DOI:10.1007/s12016-014-8451-x
  • RESNIER P, MONTIER T, MATHIEU V, et al. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials. 2013;34(27):6429–6443. DOI:10.1016/j.biomaterials.2013.04.060
  • WANG Y, BRUGGEMAN KF, FRANKS S, et al. Is viral vector gene delivery more effective using biomaterials? Adv Healthc Mater. 2021;10(1):2001238. DOI:10.1002/adhm.202001238
  • ZHENG M, TAO W, ZOU Y, et al. Nanotechnology-based strategies for siRNA brain delivery for disease therapy. Trends Biotechnol. 2018;36(5):562–575. DOI:10.1016/j.tibtech.2018.01.006
  • FINER M, GLORIOSO J. A brief account of viral vectors and their promise for gene therapy. Genet Ther. 2017;24(1):1–2.
  • KRUPOVIC M, BLOMBERG J, COFFIN JM, et al. Ortervirales: new virus order unifying five families of reverse-transcribing viruses. J Virol. 2018;92(12):e00515–18. DOI:10.1128/JVI.00515-18
  • XU L, MEI M, HASKINS ME, et al. Immune response after neonatal transfer of a human factor IX-expressing retroviral vector in dogs, cats, and mice. Thromb Res. 2007;120(2):269–280. DOI:10.1016/j.thromres.2006.09.010
  • NALDINI L, BLOMER U, GALLAY P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–267. DOI:10.1126/science.272.5259.263
  • AGHI M, HOCHBERG F, BREAKEFIELD XO. Prodrug activation enzymes in cancer gene therapy. J Gene Med. 2000;2(3):148–164.
  • SHIRLEY JL, DE Jong YP, TERHORST C, et al. Immune responses to viral gene therapy vectors. Mol Ther. 2020;28(3):709–722. DOI:10.1016/j.ymthe.2020.01.001
  • MOHAMMADINEJAD R, DEHSHAHRI A, MADAMSETTY VS, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release. 2020;325:249–275.
  • S Dokka DT, SHI X, CASTRANOVA V, et al. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17(5):521–525.
  • GUO P, COBAN O, SNEAD NM, et al. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Delivery Rev. 2010;62(6):650–666. DOI:10.1016/j.addr.2010.03.008
  • KESHARWANI P, TEKADE RK, GAJBHIYE V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine. 2011;7(3):295–304. DOI:10.1016/j.nano.2010.10.010
  • SINGH A, TRIVEDI P, JAIN NK. Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(2):274–283.
  • LIU QY, ZHU JQ, SUN T, et al. Porphyrin nanotubes composed of highly ordered molecular arrays prepared by anodic aluminum template method. RSC Adv. 2013;3(8):2765–2769. DOI:10.1039/c2ra21364h
  • DIXIT S, NOVAK T, MILLER K, et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782–1790. DOI:10.1039/C4NR04853A
  • WEBBER MJ, LANGER R. Drug delivery by supramolecular design. Chem Soc Rev. 2017;46(21):6600–6620.
  • HUANG Q, LI S, DING YF, et al. Macrocycle-wrapped polyethylenimine for gene delivery with reduced cytotoxicity. Biomater Sci. 2018;6(5):1031–1039. DOI:10.1039/C8BM00022K
  • GENG WC, HUANG Q, XU Z, et al. Gene delivery based on macrocyclic amphiphiles. Theranostics. 2019;9(11):3094–3106. DOI:10.7150/thno.31914
  • LEBRON JA, LOPEZ-CORNEJO P, OSTOS FJ. Supramolecular systems for gene and drug delivery. Pharmaceutics. 2022;14(3):471.
  • ASELA I, DONOSO-GONZALEZ O, YUTRONIC N, et al. β-cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles. Pharmaceutics. 2021;13(4):513. DOI:10.3390/pharmaceutics13040513
  • GOMEZ-GONZALEZ B, GARCIA-RIO L, BASILIO N, et al. Molecular recognition by pillar[5]arenes: evidence for simultaneous electrostatic and hydrophobic interactions. Pharmaceutics. 2021;14(1):60. DOI:10.3390/pharmaceutics14010060
  • LEBRON JA, LOPEZ-LOPEZ M, GARCIA-CALDERON CB, et al. Multivalent calixarene-based liposomes as platforms for gene and drug delivery. Pharmaceutics. 2021;13(8):1250. DOI:10.3390/pharmaceutics13081250
  • KARAVA V, SIAMIDI A, VLACHOU M, et al. Poly(l-lactic acid)-co-poly(butylene adipate) new block copolymers for the preparation of drug-loaded long acting injectable microparticles. Pharmaceutics. 2021;13(7):930. DOI:10.3390/pharmaceutics13070930
  • TANG L, ZHANG A, MEI Y, et al. NIR light-triggered chemo-phototherapy by ICG functionalized MWNTs for synergistic tumor-targeted delivery. Pharmaceutics. 2021;13(12):2145. DOI:10.3390/pharmaceutics13122145
  • MBATHA LS, MAIYO F, DANIELS A, et al. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics. 2021;13(6):900. DOI:10.3390/pharmaceutics13060900
  • YUE L, SUN T, YANG K, et al. Supramolecular nanovesicles for synergistic glucose starvation and hypoxia-activated gene therapy of cancer. Nanoscale. 2021;13(21):9570–9576. DOI:10.1039/D1NR02159A
  • TORRES CE, CIFUENTES J, GOMEZ SC, et al. Microfluidic synthesis and purification of magnetoliposomes for potential applications in the gastrointestinal delivery of difficult-to-transport drugs. Pharmaceutics. 2022;14(2):315. DOI:10.3390/pharmaceutics14020315
  • ILHAMI FB, BAYLE EA, CHENG CC. Complementary nucleobase interactions drive co-assembly of drugs and nanocarriers for selective cancer chemotherapy. Pharmaceutics. 2021;13(11):1929.
  • JAGUSIAK A, CHLOPAS K, ZEMANEK G, et al. Interaction of supramolecular congo red and congo red-doxorubicin complexes with proteins for drug carrier design. Pharmaceutics. 2021;13(12):2027. DOI:10.3390/pharmaceutics13122027
  • MAY C, RIVELLA S, CALLEGARI J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406(6791):82–86. DOI:10.1038/35017565
  • WALTHER W, PETKOV S, KUVARDINA ON, et al. Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors. Genet Ther. 2012;19(5):494–503. DOI:10.1038/gt.2011.136
  • Antonio DI Stasi S-KT, DOTTI GIANPIETRO, FUJITA YURIKO, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–1683.
  • YUE L, YANG K, WEI J, et al. Supramolecular vesicles based on gold nanorods for precise control of gene therapy and deferred photothermal therapy. CCS Chemistry. 2022;4(5):1745–1757. DOI:10.31635/ccschem.021.202101029
  • NEGRE O, EGGIMANN AV, BEUZARD Y, et al. Gene therapy of the beta-hemoglobinopathies by lentiviral transfer of the beta(A(T87Q))-globin gene. Hum Gene Ther. 2016;27(2):148–165. DOI:10.1089/hum.2016.007
  • GILBERT C. Changing challenges in the control of blindness in children. Eye (Lond). 2007;21(10):1338–1343.
  • CHEN C, YANG Z, TANG X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev. 2018;38(3):829–869.
  • ROBERTS TC, LANGER R, WOOD MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–694. DOI:10.1038/s41573-020-0075-7
  • YAMADA Y. Nucleic acid drugs—current status, issues, and expectations for exosomes. Cancers (Basel). 2021;13(19):5002.
  • BUMCROT D, MANOHARAN M, KOTELIANSKY V, et al. Rnai therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol. 2006;2(12):711–719. DOI:10.1038/nchembio839
  • TAN X, JIA F, WANG P, et al. Nucleic acid-based drug delivery strategies. J Control Release. 2020;323:240–252.
  • WU H, LIMA WF, ZHANG H, et al. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004;279(17):17181–17189. DOI:10.1074/jbc.M311683200
  • SI ML, ZHU S, WU H, et al. MiR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–2803. DOI:10.1038/sj.onc.1210083
  • KRUTZFELDT J, RAJEWSKY N, BRAICH R, et al. Silencing of microRnas in vivo with ‘antagomirs. Nature. 2005;438(7068):685–689. DOI:10.1038/nature04303
  • ECKSTEIN F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24(6):374–387.
  • CROOKE ST. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 2017;27(2):70–77.
  • WANG J, MI P, LIN G, et al. Imaging-guided delivery of RNAi for anticancer treatment. Adv Drug Delivery Rev. 2016;104:44–60.
  • TATIPARTI K, SAU S, KASHAW SK, et al. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 2017;7(4):1–17.
  • CHEN X, MANGALA LS, RODRIGUEZ-AGUAYO C, et al. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37(1):107–124. DOI:10.1007/s10555-017-9717-6
  • XIN Y, HUANG M, GUO WW, et al. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017;16(1):134. DOI:10.1186/s12943-017-0683-y
  • MILLER T, CUDKOWICZ M, SHAW PJ, et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2020;383(2):109–119. DOI:10.1056/NEJMoa2003715
  • ODATE S, VESCHI V, YAN S, et al. Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. Clin Cancer Res. 2017;23(7):1771–1784. DOI:10.1158/1078-0432.CCR-16-1317
  • DEVOS SL, MILLER RL, SCHOCH KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481. DOI:10.1126/scitranslmed.aag0481
  • PERRY CM, BALFOUR JAB. Fomivirsen [J]. Drugs. 1999;57(3):375–380.
  • KEAM SJ. Inotersen: first global approval. Drugs. 2018;78(13):1371–1376.
  • HAIR P, CAMERON F, MCKEAGE K. Mipomersen sodium: first global approval. Drugs. 2013;73(5):487–493.
  • INOUYE M. The first discovery of RNA interference by RNA restriction enzymes to inhibit protein synthesis. Gene. 2017;597:78–79.
  • JARVE A, MULLER J, KIM IH, et al. Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Res. 2007;35(18):e124. DOI:10.1093/nar/gkm694
  • RAO DD, VORHIES JS, SENZER N, et al. siRNA vs. shRNA: similarities and differences. Adv Drug Delivery Rev. 2009;61(9):746–759. doi: 10.1016/j.addr.2009.04.004
  • HUANG H, ZHANG C, WANG B, et al. Transduction with lentiviral vectors altered the expression profile of host MicroRNAs. J Virol. 2018;92(18):e00503–18. DOI:10.1128/JVI.00503-18
  • ZHANG WW, LI L, LI D, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther. 2018;29(2):160–179. DOI:10.1089/hum.2017.218
  • DEVINCENZO J, LAMBKIN-WILLIAMS R, WILKINSON T, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107(19):8800–8805. DOI:10.1073/pnas.0912186107
  • SUBRAMANYA S, KIM SS, MANJUNATH N, et al. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA? Expert Opin Biol Ther. 2010;10(2):201–213. DOI:10.1517/14712590903448158
  • ASHFAQ UA, YOUSAF MZ, ASLAM M, et al. siRnas: potential therapeutic agents against hepatitis C virus. Virol J. 2011;8:276.
  • DIFIGLIA M, SENA-ESTEVES M, CHASE K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A. 2007;104(43):17204–17209. DOI:10.1073/pnas.0708285104
  • FARAH MH. Rnai silencing in mouse models of neurodegenerative diseases. Curr Drug Deliv. 2007;4(2):161–167.
  • LI T, KOSHY S, FOLKESSON HG. RNA interference for CFTR attenuates lung fluid absorption at birth in rats. Respir Res. 2008;9:55.
  • COURTIES G, PRESUMEY J, DUROUX-RICHARD I, et al. RNA interference-based gene therapy for successful treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2009;9(5):535–538. DOI:10.1517/14712590902926089
  • COHEN ZR, RAMISHETTI S, PESHES-YALOZ N, et al. Localized RNAi therapeutics of chemoresistant grade iv glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano. 2015;9(2):1581–1591. DOI:10.1021/nn506248s
  • KARLIKOW M, GOIC B, MONGELLI V, et al. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep. 2016;6:27085.
  • JIANG T, QIAO Y, RUAN W, et al. Cation-Free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy. Adv Mater. 2021;33(45):e2104779. DOI:10.1002/adma.202104779
  • KHAN A, ALJARBOU AN, ALDEBASI YH, et al. Fatty Acid Synthase (FASN) siRNA-Encapsulated-Her-2 targeted Fab’-Immunoliposomes for gene silencing in breast cancer cells. Int J Nanomedicine. 2020;15:5575–5589.
  • E DJ, BARNES C, KHAN O, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol. 2014;9(8):648–655. DOI:10.1038/nnano.2014.84
  • ZHENG M, JIANG T, YANG W, et al. The siRnasome: a cation‐free and versatile nanostructure for siRNA and drug co‐delivery. Angewandte Chemie. 2019;58(15):4938–4942. DOI:10.1002/anie.201814289
  • SANTEL A, ALEKU M, KEIL O, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Genet Ther. 2006;13(16):1222–1234. DOI:10.1038/sj.gt.3302777
  • LEE YW, HWANG YE, LEE JY, et al. VEGF siRNA delivery by a cancer-specific cell-penetrating peptide. J Microbiol Biotechnol. 2018;28(3):367–374. DOI:10.4014/jmb.1711.11025
  • HOY SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–1631.
  • SETTEN RL, ROSSI JJ, HAN SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–446.
  • SAW PE, SONG EW. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63(4):485–500.
  • RAAL FJ, KALLEND D, RAY KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382(16):1520–1530. DOI:10.1056/NEJMoa1913805
  • LI LC, OKINO ST, ZHAO H, et al. Small dsRnas induce transcriptional activation in human cells. Proc Natl Acad Sci U S A. 2006;103(46):17337–17342. DOI:10.1073/pnas.0607015103
  • VOUTILA J, REEBYE V, ROBERTS TC, et al. Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol Ther. 2017;25(12):2705–2714. DOI:10.1016/j.ymthe.2017.07.018
  • TAN CP, SINIGAGLIA L, GOMEZ V, et al. RNA activation—A novel approach to therapeutically upregulate gene transcription. Molecules. 2021;26(21):6530. DOI:10.3390/molecules26216530
  • DYKXHOORN DM, NOVINA CD, SHARP PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 2003;4(6):457–467.
  • PLACE RF, NOONAN EJ, FOLDES-PAPP Z, et al. Defining features and exploring chemical modifications to manipulate RNAa activity. Curr Pharm Biotechnol. 2010;11(5):518–526. DOI:10.2174/138920110791591463
  • REEBYE V, SAETROM P, J MP, et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology. 2014;59(1):216–227. DOI:10.1002/hep.26669
  • JANOWSKI BA, YOUNGER ST, HARDY DB, et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007;3(3):166–173. DOI:10.1038/nchembio860
  • KANG MR, YANG G, PLACE RF, et al. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res. 2012;72(19):5069–5079. DOI:10.1158/0008-5472.CAN-12-1871
  • KOSAKA M, KANG MR, YANG G, et al. Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther. 2012;22(5):335–343. DOI:10.1089/nat.2012.0354
  • PLACE RF, WANG J, NOONAN EJ, et al. Formulation of small activating RNA into lipidoid nanoparticles inhibits xenograft prostate tumor growth by inducing p21 expression. Mol Ther Nucleic Acids. 2012;1:e15.
  • A SDS, BRYSZEWSKA M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv. 2013;10(12):1687–1698.
  • REEBYE V, HUANG KW, LIN V, et al. Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene. 2018;37(24):3216–3228. DOI:10.1038/s41388-018-0126-2
  • HUANG KW, TAN CP, REEBYE V, et al. MTL-CEBPA combined with immunotherapy or RFA enhances immunological anti-tumor response in preclinical models. Int J Mol Sci. 2021;22(17):9168. DOI:10.3390/ijms22179168
  • HASHIMOTO A, SARKER D, REEBYE V, et al. Upregulation of C/EBPalpha inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin Cancer Res. 2021;27(21):5961–5978. DOI:10.1158/1078-0432.CCR-21-0986
  • SARKER D, PLUMMER R, MEYER T, et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-alpha, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin Cancer Res. 2020;26(15):3936–3946. DOI:10.1158/1078-0432.CCR-20-0414
  • KONERMANN S, BRIGHAM MD, TREVINO AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–588. DOI:10.1038/nature14136
  • CHAVEZ A, TUTTLE M, PRUITT BW, et al. Comparison of Cas9 activators in multiple species. Nat Methods. 2016;13(7):563–567. DOI:10.1038/nmeth.3871
  • ZHOU H, LIU J, ZHOU C, et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci. 2018;21(3):440–446. DOI:10.1038/s41593-017-0060-6
  • DAMAS ETR, SUKHOVERSHIN R, BOADA C, et al. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9:628137.
  • HOUSDEN BE, MUHAR M, GEMBERLING M, et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet. 2017;18(1):24–40. DOI:10.1038/nrg.2016.118
  • WANG H, YANG H, SHIVALILA CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–918. DOI:10.1016/j.cell.2013.04.025
  • BENGTSSON NE, HALL JK, ODOM GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8:14454.
  • OMER L, HUDSON EA, ZHENG S, et al. CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells. Hepatol Commun. 2017;1(9):886–898. DOI:10.1002/hep4.1110
  • ZHANG D, WANG G, YU X, et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat Nanotechnol. 2022;17(7):777–787. DOI:10.1038/s41565-022-01122-3
  • ZHANG F, WEN Y, GUO X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6.
  • MUSUNURU K. The hope and hype of CRISPR-Cas9 genome editing: a review. JAMA Cardiol. 2017;2(8):914–919.
  • KEENER AB. Delivering the goods: scientists seek a way to make CRISPR-Cas gene editing more targeted. Nat Med. 2015;21(11):1239–1241.
  • NELSON CE, GERSBACH CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7:637–662.
  • WILBIE D, WALTHER J, MASTROBATTISTA E. Delivery aspects of CRISPR/cas for in vivo genome editing. Acc Chem Res. 2019;52(6):1555–1564.
  • LAFOUNTAINE JS, FATHE K, SMYTH HD. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm. 2015;494(1):180–194.
  • GORI JL, HSU PD, MAEDER ML, et al. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Hum Gene Ther. 2015;26(7):443–451. DOI:10.1089/hum.2015.074
  • LIU L, CAO J, CHANG Q, et al. In Vivo Exon replacement in the mouse Atp7b gene by the Cas9 system. Hum Gene Ther. 2019;30(9):1079–1092. DOI:10.1089/hum.2019.037
  • MAEDER ML, GERSBACH CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430–446.
  • WANG AY, PENG PD, EHRHARDT A, et al. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum Gene Ther. 2004;15(4):405–413. DOI:10.1089/104303404322959551
  • YANG Y, WANG L, BELL P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nature Biotechnol. 2016;34(3):334–338. DOI:10.1038/nbt.3469
  • WU Z, YANG H, COLOSI P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18(1):80–86.
  • CHEN X, GONCALVES MA. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–457.
  • PETROS RA, DESIMONE JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–627.
  • GU Z, BISWAS A, ZHAO M, et al. Tailoring nanocarriers for intracellular protein delivery. Chem Soc Rev. 2011;40(7):3638–3655. DOI:10.1039/c0cs00227e
  • YAN M, DU J, GU Z, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol. 2010;5(1):48–53. DOI:10.1038/nnano.2009.341
  • KUAN SL, NG DY, WU Y, et al. pH responsive Janus-like supramolecular fusion proteins for functional protein delivery. J Am Chem Soc. 2013;135(46):17254–17257. DOI:10.1021/ja4084122
  • PELEGRI-O’day EM, LIN EW, MAYNARD HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc. 2014;136(41):14323–14332.
  • JIANG Y, LU H, CHEN F, et al. Pegylated albumin-based polyion complex micelles for protein delivery. Biomacromolecules. 2016;17(3):808–817. DOI:10.1021/acs.biomac.5b01537
  • KERN HB, SRINIVASAN S, CONVERTINE AJ, et al. Enzyme-cleavable polymeric micelles for the intracellular delivery of proapoptotic peptides. Mol Pharm. 2017;14(5):1450–1459. DOI:10.1021/acs.molpharmaceut.6b01178
  • XIONG H, ZHOU Y, ZHOU Q, et al. Nanocapsule assemblies as effective enzyme delivery systems against hyperuricemia. Nanomedicine. 2016;12(6):1557–1566. DOI:10.1016/j.nano.2016.02.010
  • ZOU Y, SUN X, YANG Q, et al. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci Adv. 2022;8(16):eabm8011. DOI:10.1126/sciadv.abm8011
  • SHABBIR MAB, SHABBIR MZ, WU Q, et al. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob. 2019;18(1):21. DOI:10.1186/s12941-019-0317-x
  • FU A, TANG R, HARDIE J, et al. Promises and pitfalls of intracellular delivery of proteins. Bioconjugate Chem. 2014;25(9):1602–1608. DOI:10.1021/bc500320j
  • BIAGIONI A, LAURENZANA A, MARGHERI F, et al. Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng. 2018;12:33.
  • LI L, HU S, CHEN X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–218.
  • EOH J, GU L. Biomaterials as vectors for the delivery of CRISPR-Cas9. Biomater Sci. 2019;7(4):1240–1261.
  • WANG HX, LI M, LEE CM, et al. Crispr/cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117(15):9874–9906. DOI:10.1021/acs.chemrev.6b00799
  • WEI T, CHENG Q, MIN YL, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):3232. DOI:10.1038/s41467-020-17029-3
  • CHEN G, ABDEEN AA, WANG Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol. 2019;14(10):974–980. DOI:10.1038/s41565-019-0539-2
  • GAO X, TAO Y, LAMAS V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553(7687):217–221. DOI:10.1038/nature25164
  • VAN Der MEEL R. Nanotechnology for organ-tunable gene editing. Nature Nanotechnol. 2020;15(4):253–255.
  • CHENG Q, WEI T, FARBIAK L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–320. DOI:10.1038/s41565-020-0669-6
  • CHEN Z, LIU F, CHEN Y, et al. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Adv Funct Mater. 2017;27(46):1703036. DOI:10.1002/adfm.201703036
  • LIU Q, ZHAO K, WANG C, et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv Sci. 2019;6(1):1801423. DOI:10.1002/advs.201801423
  • LEE K, CONBOY M, PARK HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1(11):889–901. DOI:10.1038/s41551-017-0137-2
  • WAREJONCAS Z, CAMPBELL JM, MARTINEZ-GALVEZ G, et al. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol. 2018;14(11):663–677. DOI:10.1038/s41581-018-0047-x
  • TANG T, GAO MH, HAMMOND HK. Prospects for gene transfer for clinical heart failure. Genet Ther. 2012;19(6):606–612.
  • MOODLEY S, WEBER F, MULLIGAN LM. The evolving clinical, genetic and therapeutic landscape of multiple endocrine neoplasia type 2. Endocr Relat Cancer. 2018;25(2):E1–4.
  • CHEN HC, LIU DY, GUO ZJ. Endogenous stimuli-responsive nanocarriers for drug delivery. Chem Lett. 2016;45(3):242–249.
  • GURAGAIN S, BASTAKOTI BP, MALGRAS V, et al. Multi-stimuli-responsive polymeric materials. Chemistry. 2015;21(38):13164–13174. DOI:10.1002/chem.201501101
  • SINGH B, MAHARJAN S, PARK TE, et al. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol biosci. 2015;15(5):622–635. DOI:10.1002/mabi.201400463
  • ZAKERI A, KOUHBANANI MAJ, BEHESHTKHOO N, et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 2018;9(1):1488497. DOI:10.1080/20022727.2018.1488497
  • YAO Q, KOU L, TU Y, et al. MMP-Responsive ‘Smart’ drug delivery and tumor targeting. Trends Pharmacol Sci. 2018;39(8):766–781. DOI:10.1016/j.tips.2018.06.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.