652
Views
0
CrossRef citations to date
0
Altmetric
Review

Barriers for orally inhaled therapeutic antibodies

&
Pages 1071-1084 | Received 12 May 2023, Accepted 16 Aug 2023, Published online: 25 Aug 2023

References

  • Kaplon H, Crescioli S, Chenoweth A, et al. Antibodies to watch in 2023. MAbs. 2023 Jan;15(1):2153410. doi: 10.1080/19420862.2022.2153410
  • The Antibody Society. 2023 May 01. Available from: https://www.antibodysociety.org/resources/approved-antibodies/
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520
  • Beck A, Haeuw JF, Wurch T, et al. The next generation of antibody-drug conjugates comes of age. Discov Med. 2010 Oct;10(53):329–339.
  • Elshiaty M, Schindler H, Christopoulos P. Principles and Current clinical Landscape of Multispecific antibodies against cancer. Int J Mol Sci. 2021 May 26;22(11):5632. doi: 10.3390/ijms22115632
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017 Sep;6(9):576–588. doi: 10.1002/psp4.12224
  • Alagga AA, Gupta V. Drug absorption. StatPearls. 2023. Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK557405/
  • Agusti A, Vogelmeier CF, Halpin DMG. Tackling the global burden of lung disease through prevention and early diagnosis. Lancet Respir Med. 2022 Nov;10(11):1013–1015. doi: 10.1016/S2213-2600(22)00302-2
  • Tsai CW, Morris S. Approval of Raxibacumab for the treatment of inhalation anthrax under the US Food and drug administration “animal Rule”. Front Microbiol. 2015;6:1320. doi: 10.3389/fmicb.2015.01320
  • Chiang DT, Clark J, Casale TB. Omalizumab in asthma: approval and postapproval experience. Clin Rev Allergy Immunol. 2005 Aug;29(1):3–16. doi: 10.1385/CRIAI:29:1:003
  • Pai-Scherf L, Blumenthal GM, Li H, et al. FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. Oncology. 2017 Nov;22(11):1392–1399. doi: 10.1634/theoncologist.2017-0078
  • Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: The complex Interplay of pulmonary Kinetic processes. Can Respir J. 2018;2018:2732017. doi: 10.1155/2018/2732017
  • Rau JL. The inhalation of drugs: advantages and problems. Respir Care. 2005 Mar;50(3):367–382.
  • Herve V, Rabbe N, Guilleminault L, et al. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations. MAbs. 2014;6(6):1638–1648. doi: 10.4161/mabs.34454
  • Guilleminault L, Azzopardi N, Arnoult C, et al. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release. 2014 Dec 28;196:344–354. doi: 10.1016/j.jconrel.2014.10.003
  • Koussoroplis SJ, Paulissen G, Tyteca D, et al. Pegylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. J Control Release. 2014 Aug 10;187:91–100. doi: 10.1016/j.jconrel.2014.05.021
  • Respaud R, Vecellio L, Diot P, et al. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv. 2015 Jun;12(6):1027–1039. doi: 10.1517/17425247.2015.999039
  • Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–344. doi: 10.1513/pats.200409-049TA
  • de Boer AH, Gjaltema D, Hagedoorn P, et al. Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm. 2002 Dec 5;249(1–2):219–231. doi: 10.1016/S0378-5173(02)00526-4
  • Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1(4):315–320. doi: 10.1513/pats.200409-046TA
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014 Aug;75:81–91. doi: 10.1016/j.addr.2014.05.017
  • Ferrati S, Wu T, Kanapuram SR, et al. Dosing considerations for inhaled biologics. Int J Pharm. 2018 Oct 5;549(1–2):58–66. doi: 10.1016/j.ijpharm.2018.07.054
  • Rohrer J, Lupo N, Bernkop-Schnurch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm. 2018 Dec 20;553(1–2):8–20. doi: 10.1016/j.ijpharm.2018.10.029
  • Shepard KB, Vodak DT, Kuehl PJ, et al. Local treatment of non-small cell lung cancer with a spray-dried Bevacizumab formulation. AAPS Pharm Sci Tech. 2021 Aug 31;22(7):230. doi: 10.1208/s12249-021-02095-7
  • Burgess G, Boyce M, Jones M, et al. Randomized study of the safety and pharmacodynamics of inhaled interleukin-13 monoclonal antibody fragment VR942. EBioMedicine. 2018 Sep;35:67–75.
  • Pan HW, Seow HC, JCK L, et al. Spray-dried and spray-freeze-dried powder formulations of an anti-interleukin-4Ralpha antibody for pulmonary delivery. Pharm Res. 2022 Sep;39(9):2291–2304. doi: 10.1007/s11095-022-03331-w
  • Rajapaksa A, Qi A, Yeo LY, et al. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation. Lab Chip. 2014 Jun 7;14(11):1858–1865. doi: 10.1039/C4LC00232F
  • Van Heeke G, Allosery K, De Brabandere V, et al. Nanobodies(r) as inhaled biotherapeutics for lung diseases. Pharmacol Ther. 2017 Jan;169:47–56.
  • Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. Mol Biomed. 2020;1(1):11. doi: 10.1186/s43556-020-00014-z
  • Cunningham S, Piedra PA, Martinon-Torres F, et al. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med. 2021 Jan 01;9(1):21–32.
  • Mayor A, Thibert B, Huille S, et al. Inhaled antibodies: formulations require specific development to overcome instability due to nebulization. Drug Deliv Transl Res. 2021 Aug;11(4):1625–1633. doi: 10.1007/s13346-021-00967-w
  • Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013 Apr 15;447(1–2):251–280. doi: 10.1016/j.ijpharm.2013.02.031
  • Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010 Jun 15;392(1–2):1–19. doi: 10.1016/j.ijpharm.2010.03.017
  • Hickey AJ, Stewart IE. Inhaled antibodies: Quality and performance considerations. Human Vaccines Immunother. 2022 Apr 29;18(2):1940650. doi: 10.1080/21645515.2021.1940650
  • Chen L, Okuda T, Lu XY, et al. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev. 2016 May 1;100:102–115. doi: 10.1016/j.addr.2016.01.002
  • Son YJ, Miller DP, Weers JG. Optimizing spray-dried Porous particles for high dose delivery with a Portable dry powder inhaler. Pharmaceutics. 2021 Sep 21;13(9):1528. doi: 10.3390/pharmaceutics13091528
  • Mayor A, Thibert B, Huille S, et al. Inhaled IgG1 antibodies: The buffering system is an important driver of stability during mesh-nebulization. Eur J Pharm Biopharm. 2022 Dec;181:173–182.
  • Respaud R, Marchand D, Pelat T, et al. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin. J Control Release. 2016 Jul 28;234:21–32. doi: 10.1016/j.jconrel.2016.05.018
  • Respaud R, Marchand D, Parent C, et al. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs. 2014;6(5):1347–1355. doi: 10.4161/mabs.29938
  • Le Basle Y, Chennell P, Tokhadze N, et al. Physicochemical stability of monoclonal antibodies: A review. J Pharm Sci. 2020 Jan;109(1):169–190. doi: 10.1016/j.xphs.2019.08.009
  • Burkitt W, Domann P, O’Connor G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010 Apr;19(4):826–835. doi: 10.1002/pro.362
  • Bodier-Montagutelli E, Respaud R, Perret G, et al. Protein stability during nebulization: Mind the collection step! Eur J Pharm Biopharm. 2020 Jul;152:23–34.
  • Ponce R, Abad L, Amaravadi L, et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol. 2009 Jul;54(2):164–182. doi: 10.1016/j.yrtph.2009.03.012
  • Krishna M, Nadler SG. Immunogenicity to biotherapeutics - the role of anti-drug immune Complexes. Front Immunol. 2016;7:21. doi: 10.3389/fimmu.2016.00021
  • Secher T, Bodier-Montagutelli E, Parent C, et al. Aggregates associated with instability of antibodies during aerosolization induce adverse immunological effects. Pharmaceutics. 2022 Mar 18;14(3):671. doi: 10.3390/pharmaceutics14030671
  • Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017 Oct 30;532(1):555–572. doi: 10.1016/j.ijpharm.2017.09.018
  • Lai SK, Wang YY, Wirtz D, et al. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009 Feb 27;61(2):86–100. doi: 10.1016/j.addr.2008.09.012
  • Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008;70(1):459–486. doi: 10.1146/annurev.physiol.70.113006.100702
  • Creeth JM. Constituents of mucus and their separation. Br Med Bull. 1978 Jan;34(1):17–24. doi: 10.1093/oxfordjournals.bmb.a071454
  • Lieleg O, Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011 Sep;21(9):543–551. doi: 10.1016/j.tcb.2011.06.002
  • Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006 Jan;86(1):245–278. doi: 10.1152/physrev.00010.2005
  • Sanders N, Rudolph C, Braeckmans K, et al. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009 Feb 27;61(2):115–127. doi: 10.1016/j.addr.2008.09.011
  • Olmsted SS, Padgett JL, Yudin AI, et al. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J. 2001 Oct;81(4):1930–1937. doi: 10.1016/S0006-3495(01)75844-4
  • Patil HP, Freches D, Karmani L, et al. Fate of PEGylated antibody fragments following delivery to the lungs: Influence of delivery site, PEG size and lung inflammation. J Control Release. 2018 Feb 28;272:62–71. doi: 10.1016/j.jconrel.2017.12.009
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009 Feb 27;61(2):75–85. doi: 10.1016/j.addr.2008.09.008
  • Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med. 2007;58:157–170. doi: 10.1146/annurev.med.58.071905.105316
  • Button B, Cai LH, Ehre C, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science. 2012 Aug 24;337(6097):937–941. doi: 10.1126/science.1223012
  • Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine. 2010 Apr;6(2):237–244. doi: 10.1016/j.nano.2009.07.001
  • Duncan GA, Jung J, Joseph A, et al. Microstructural alterations of sputum in cystic fibrosis lung disease. JCI Insight. 2016 Nov 3;1(18):e88198. doi: 10.1172/jci.insight.88198
  • Braeckmans K, Peeters L, Sanders NN, et al. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J. 2003 Oct;85(4):2240–2252. doi: 10.1016/S0006-3495(03)74649-9
  • Ensign LM, Tang BC, Wang YY, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012 Jun 13;4(138):138ra79. doi: 10.1126/scitranslmed.3003453
  • Maisel K, Reddy M, Xu Q, et al. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine (Lond). 2016 Jun;11(11):1337–1343. doi: 10.2217/nnm-2016-0047
  • Lai SK, O’Hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1482–1487. doi: 10.1073/pnas.0608611104
  • Muralidharan P, Mallory E, Malapit M, et al. Inhalable PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery as aerosolized colloidal dispersions and dry powder inhalers. Pharmaceutics. 2014 Jun 20;6(2):333–353. doi: 10.3390/pharmaceutics6020333
  • Haitsma JJ, Lachmann U, Lachmann B. Exogenous surfactant as a drug delivery agent. Adv Drug Deliv Rev. 2001 Apr 25;47(2–3):197–207. doi: 10.1016/S0169-409X(01)00106-5
  • Lopez-Rodriguez E, Perez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta. 2014 Jun;1838(6):1568–1585. doi: 10.1016/j.bbamem.2014.01.028
  • Guagliardo R, Perez-Gil J, De Smedt S, et al. Pulmonary surfactant and drug delivery: focusing on the role of surfactant proteins. J Control Release. 2018 Dec 10;291:116–126. doi: 10.1016/j.jconrel.2018.10.012
  • Castillo-Sanchez JC, Cruz A, Perez-Gil J. Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys. 2021 May 30;703:108850. doi: 10.1016/j.abb.2021.108850
  • Fernandes CA, Vanbever R. Preclinical models for pulmonary drug delivery. Expert Opin Drug Deliv. 2009 Nov;6(11):1231–1245. doi: 10.1517/17425240903241788
  • Mandal T, Konduru NV, Ramazani A, et al. Effect of surface charge and hydrophobicity on phospholipid-nanoparticle corona formation: a molecular dynamics simulation study. Coll Inter Sci Commun. 2018 Jun 01;25:7–11.
  • Ruge CA, Schaefer UF, Herrmann J, et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One. 2012;7(7):e40775. doi: 10.1371/journal.pone.0040775
  • Todoroff J, Vanbever R. Fate of nanomedicines in the lungs. Curr Opin Colloid Interface Sci. 2011 Jun 01;16(3):246–254.
  • Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008 Nov;84(5):548–558. doi: 10.1038/clpt.2008.170
  • Ducreux J, Vanbever R. Crucial biopharmaceutical issues facing macromolecular candidates for inhalation: the role of macrophages in pulmonary protein clearance. Respir Drug Deliv Eur. 2007;2007:31–41.
  • Lombry C, Edwards DA, Preat V, et al. Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am J Physiol Lung Cell Mol Physiol. 2004 May;286(5):L1002–8. doi: 10.1152/ajplung.00260.2003
  • Hidalgo A, Cruz A, Perez-Gil J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm. 2015 Sep;95(Pt A):117–127. doi: 10.1016/j.ejpb.2015.02.014
  • Lachmann B, Eijking EP, So KL, et al. In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intensive care Med. 1994;20(1):6–11. doi: 10.1007/BF02425047
  • Michelson P, Faro A, Ferkol T, et al. 51 - pulmonary disease in cystic fibrosis. In: Wilmott R, Deterding R Li A, editors. Kendig’s Disorders of the Respiratory Tract in Children. Ninth. Philadelphia: Elsevier; 2019. p. 777–787.e4. 10.1016/B978-0-323-44887-1.00051-1
  • Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010 Aug;23(4):207–217. doi: 10.1089/jamp.2009.0797
  • Tsapis N, Bennett D, Jackson B, et al. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12001–12005. doi: 10.1073/pnas.182233999
  • Woods A, Andrian T, Sharp G, et al. Development of new in vitro models of lung protease activity for investigating stability of inhaled biological therapies and drug delivery systems. Eur J Pharm Biopharm. 2020 Jan;146:64–72.
  • Candiano G, Bruschi M, Pedemonte N, et al. Proteomic analysis of the airway surface liquid: modulation by proinflammatory cytokines. Am J Physiol Lung Cell Mol Physiol. 2007 Jan;292(1):L185–98. doi: 10.1152/ajplung.00085.2006
  • Nagae A, Abe M, Becker RP, et al. High concentration of carboxypeptidase M in lungs: presence of the enzyme in alveolar type I cells. Am J Respir Cell Mol Biol. 1993 Aug;9(2):221–229. doi: 10.1165/ajrcmb/9.2.221
  • Vasiljeva O, Menendez E, Nguyen M, et al. Monitoring protease activity in biological tissues using antibody prodrugs as sensing probes. Sci Rep. 2020 Apr 3;10(1):5894. doi: 10.1038/s41598-020-62339-7
  • Dunnhaupt S, Kammona O, Waldner C, et al. Nano-carrier systems: Strategies to overcome the mucus gel barrier. Eur J Pharm Biopharm. 2015 Oct;96:447–453.
  • von Pawel-Rammingen U, Johansson BP, Bjorck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 2002 Apr 2;21(7):1607–1615. doi: 10.1093/emboj/21.7.1607
  • Brezski RJ, Jordan RE. Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity? MAbs. 2010 May;2(3):212–220. doi: 10.4161/mabs.2.3.11780
  • Deveuve Q, Lajoie L, Barrault B, et al. The proteolytic cleavage of therapeutic monoclonal antibody hinge region: more than a matter of subclass. Front Immunol. 2020;11:168. doi: 10.3389/fimmu.2020.00168
  • Biancheri P, Brezski RJ, Di Sabatino A, et al. Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology. 2015 Nov;149(6):1564–1574 e3. doi: 10.1053/j.gastro.2015.07.002
  • Curciarello R, Sobande T, Jones S, et al. Human Neutrophil elastase proteolytic activity in ulcerative colitis favors the loss of function of therapeutic monoclonal antibodies. J Inflamm Res. 2020;13:233–243. doi: 10.2147/JIR.S234710
  • Kinder M, Greenplate AR, Grugan KD, et al. Engineered protease-resistant antibodies with selectable cell-killing functions. J Biol Chem. 2013 Oct 25;288(43):30843–30854. doi: 10.1074/jbc.M113.486142
  • Hsiao HC, Fan X, Jordan RE, et al. Proteolytic single hinge cleavage of pertuzumab impairs its Fc effector function and antitumor activity in vitro and in vivo. Breast Cancer Res. 2018 Jun 1;20(1):43. doi: 10.1186/s13058-018-0972-4
  • Fan X, Brezski RJ, Fa M, et al. A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy. Breast Cancer Res. 2012 Aug 8;14(4):R116. doi: 10.1186/bcr3240
  • Zhang N, Deng H, Fan X, et al. Dysfunctional antibodies in the tumor microenvironment associate with impaired anticancer immunity. Clin Cancer Res. 2015 Dec 1;21(23):5380–5390. doi: 10.1158/1078-0432.CCR-15-1057
  • Agu RU, Ugwoke MI, Armand M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198–209. doi: 10.1186/rr58
  • Youn YS, Kwon MJ, Na DH, et al. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin: optimization by PEG size selection. J Control Release. 2008 Jan 4;125(1):68–75. doi: 10.1016/j.jconrel.2007.10.008
  • Al Ojaimi Y, Blin T, Lamamy J, et al. Therapeutic antibodies – natural and pathological barriers and strategies to overcome them. Pharmacol Ther. 2021 Oct 20;233:108022. doi: 10.1016/j.pharmthera.2021.108022
  • Hashimoto S, Okayama Y, Shime N, et al. Neutrophil elastase activity in acute lung injury and respiratory distress syndrome. Respirology. 2008 Jun;13(4):581–584. doi: 10.1111/j.1440-1843.2008.01283.x
  • Pandey KC, De S, Mishra PK. Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8:512. doi: 10.3389/fphar.2017.00512
  • Thulborn SJ, Mistry V, Brightling CE, et al. Neutrophil elastase as a biomarker for bacterial infection in COPD. Respir Res. 2019 Jul 30;20(1):170. doi: 10.1186/s12931-019-1145-4
  • Witko-Sarsat V, Halbwachs-Mecarelli L, Schuster A, et al. Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum. Am J Respir Cell Mol Biol. 1999 Apr;20(4):729–736. doi: 10.1165/ajrcmb.20.4.3371
  • Oriano M, Terranova L, Sotgiu G, et al. Evaluation of active neutrophil elastase in sputum of bronchiectasis and cystic fibrosis patients: A comparison among different techniques. Pulm Pharmacol Ther. 2019 Dec;59:101856.
  • Chalmers JD, Moffitt KL, Suarez-Cuartin G, et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am J Respir Crit Care Med. 2017 May 15;195(10):1384–1393. doi: 10.1164/rccm.201605-1027OC
  • Fan X, Brezski RJ, Deng H, et al. A novel therapeutic strategy to rescue the immune effector function of proteolytically inactivated cancer therapeutic antibodies. Mol Cancer Ther. 2015 Mar;14(3):681–691. doi: 10.1158/1535-7163.MCT-14-0715
  • Amancha KP, Hussain A. Effect of protease inhibitors on pulmonary bioavailability of therapeutic proteins and peptides in the rat. Eur J Pharm Sci. 2015 Feb 20;68:1–10. doi: 10.1016/j.ejps.2014.11.008
  • Park SH, Kwon JH, Lim SH, et al. Characterization of human insulin microcrystals and their absorption enhancement by protease inhibitors in rat lungs. Int J Pharm. 2007 Jul 18;339(1–2):205–212. doi: 10.1016/j.ijpharm.2007.03.003
  • Hussain A, Arnold JJ, Khan MA, et al. Absorption enhancers in pulmonary protein delivery. J Control Release. 2004 Jan 8;94(1):15–24. doi: 10.1016/j.jconrel.2003.10.001
  • Montanaro L, Poggi A, Visai L, et al. Extracellular DNA in biofilms. Int J Artif Organs. 2011 Sep;34(9):824–831. doi: 10.5301/ijao.5000051
  • Ciornei CD, Novikov A, Beloin C, et al. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun. 2010 Oct;16(5):288–301. doi: 10.1177/1753425909341807
  • Fong JC, Karplus K, Schoolnik GK, et al. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol. 2006 Feb;188(3):1049–1059. doi: 10.1128/JB.188.3.1049-1059.2006
  • Tielker D, Hacker S, Loris R, et al. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology (Reading). 2005 May;151(Pt 5):1313–1323. doi: 10.1099/mic.0.27701-0
  • Meluleni GJ, Grout M, Evans DJ, et al. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol. 1995 Aug 15;155(4):2029–2038. doi: 10.4049/jimmunol.155.4.2029
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999 May 21;284(5418):1318–1322. doi: 10.1126/science.284.5418.1318
  • Anaya-Lopez JL, Lopez-Meza JE, Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol. 2013 May;39(2):180–195. doi: 10.3109/1040841X.2012.699025
  • Campoccia D, Mirzaei R, Montanaro L, et al. Hijacking of immune defences by biofilms: a multifront strategy. Biofouling. 2019 Nov;35(10):1055–1074. doi: 10.1080/08927014.2019.1689964
  • Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017 Dec;15(12):740–755. doi: 10.1038/nrmicro.2017.99
  • Bjarnsholt T, Ciofu O, Molin S, et al. Applying insights from biofilm biology to drug development - can a new approach be developed? Nat Rev Drug Discov. 2013 Oct;12(10):791–808. doi: 10.1038/nrd4000
  • Zander ZK, Becker ML. Antimicrobial and Antifouling strategies for polymeric medical devices. ACS Macro Lett. 2018 Jan 16;7(1):16–25. doi: 10.1021/acsmacrolett.7b00879
  • Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly. Science. 2010 Apr 30;328(5978):627–629. doi: 10.1126/science.1188628
  • Chang RYK, Li M, Chow MYT, et al. A dual action of D-amino acids on anti-biofilm activity and moisture-protection of inhalable ciprofloxacin powders. Eur J Pharm Biopharm. 2022 Apr;173:132–140.
  • Louis M, Clamens T, Tahrioui A, et al. Pseudomonas aeruginosa biofilm dispersion by the human atrial natriuretic peptide. Adv Sci. 2022 Mar;9(7):e2103262. doi: 10.1002/advs.202103262
  • Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008 Sep;60(12):1421–1434. doi: 10.1016/j.addr.2008.04.012
  • Liang W, Pan HW, Vllasaliu D, et al. Pulmonary delivery of biological drugs. Pharmaceutics. 2020 Oct 26;12(11):1025. doi: 10.3390/pharmaceutics12111025
  • Glassman PM, Abuqayyas L, Balthasar JP. Assessments of antibody biodistribution. J Clin Pharmacol. 2015 Mar;55(3):S29–38. doi: 10.1002/jcph.365
  • Niven RW. Delivery of biotherapeutics by inhalation aerosol. Crit Rev Ther Drug Carrier Syst. 1995;12(2–3):151–231. doi: 10.1615/CritRevTherDrugCarrierSyst.v12.i2-3.20
  • Wolff RK. Safety of inhaled proteins for therapeutic use. J Aerosol Med. 1998 Winter;11(4):197–219. doi: 10.1089/jam.1998.11.197
  • Folkesson HG, Westrom BR, Karlsson BW. Permeability of the respiratory tract to different-sized macromolecules after intratracheal instillation in young and adult rats. Acta Physiol Scand. 1990 Jun;139(2):347–354. doi: 10.1111/j.1748-1716.1990.tb08933.x
  • Conhaim RL, Watson KE, Lai-Fook SJ, et al. Transport properties of alveolar epithelium measured by molecular hetastarch absorption in isolated rat lungs. J Appl Physiol. 2001 Oct;91(4):1730–1740. doi: 10.1152/jappl.2001.91.4.1730
  • Holter JF, Weiland JE, Pacht ER, et al. Protein permeability in the adult respiratory distress syndrome. Loss of size selectivity of the alveolar epithelium. J Clin Invest. 1986 Dec;78(6):1513–1522. doi: 10.1172/JCI112743
  • Patton JS, Trinchero P, Platz RM. Bioavailability of pulmonary delivered peptides and proteins: α-interferon, calcitonins and parathyroid hormones. JControlled Release. 1994 Jan 01;28(1):79–85.
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007 Jan;6(1):67–74. doi: 10.1038/nrd2153
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003 Dec;56(6):588–599. doi: 10.1046/j.1365-2125.2003.01892.x
  • Maillet A, Guilleminault L, Lemarie E, et al. The airways, a novel route for delivering monoclonal antibodies to treat lung tumors. Pharm Res. 2011 Sep;28(9):2147–2156. doi: 10.1007/s11095-011-0442-5
  • Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001 Aug;281(2):C388–97. doi: 10.1152/ajpcell.2001.281.2.C388
  • Kim KJ, Malik AB. Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol. 2003 Feb;284(2):L247–59. doi: 10.1152/ajplung.00235.2002
  • Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009 Nov;9(11):799–809. doi: 10.1038/nri2653
  • Buschmann MM, Shen L, Rajapakse H, et al. Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell. 2013 Oct;24(19):3056–3068. doi: 10.1091/mbc.e12-09-0688
  • Ober RJ, Martinez C, Vaccaro C, et al. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol. 2004 Feb 15;172(4):2021–2029. doi: 10.4049/jimmunol.172.4.2021
  • Antohe F, Radulescu L, Gafencu A, et al. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol. 2001 Feb;62(2):93–105. doi: 10.1016/S0198-8859(00)00244-5
  • Spiekermann GM, Finn PW, Ward ES, et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med. 2002 Aug 5;196(3):303–310. doi: 10.1084/jem.20020400
  • Sakagami M, Omidi Y, Campbell L, et al. Expression and transport functionality of FcRn within rat alveolar epithelium: a study in primary cell culture and in the isolated perfused lung. Pharm Res. 2006 Feb;23(2):270–279. doi: 10.1007/s11095-005-9226-0
  • Akilesh S, Christianson GJ, Roopenian DC, et al. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol. 2007 Oct 1;179(7):4580–4588. doi: 10.4049/jimmunol.179.7.4580
  • Latvala S, Jacobsen B, Otteneder MB, et al. Distribution of FcRn across species and tissues. J Histochem Cytochem. 2017 Jun;65(6):321–333. doi: 10.1369/0022155417705095
  • Campanari ML, Bourefis AR, Kabashi E. Diagnostic challenge and Neuromuscular Junction Contribution to ALS Pathogenesis. Front Neurol. 2019;10:68. doi: 10.3389/fneur.2019.00068
  • Raghavan M, Bonagura VR, Morrison SL, et al. Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 1995 Nov 14;34(45):14649–14657. doi: 10.1021/bi00045a005
  • Kim JK, Firan M, Radu CG, et al. Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol. 1999 Sep;29(9):2819–2825. doi: 10.1002/(SICI)1521-4141(199909)29:09<2819:AID-IMMU2819>3.0.CO;2-6
  • Oganesyan V, Damschroder MM, Cook KE, et al. Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem. 2014 Mar 14;289(11):7812–7824. doi: 10.1074/jbc.M113.537563
  • Vogelzang A, Lozza L, Reece ST, et al. Neonatal Fc receptor Regulation of lung immunoglobulin and CD103+ Dendritic cells confers Transient Susceptibility to Tuberculosis. Infect Immun. 2016 Oct;84(10):2914–2921. doi: 10.1128/IAI.00533-16
  • Bequignon E, Dhommee C, Angely C, et al. FcRn-dependent transcytosis of monoclonal antibody in human nasal epithelial cells in vitro: A Prerequisite for a New delivery route for therapy? Int J Mol Sci. 2019 Mar 19;20(6):1379. doi: 10.3390/ijms20061379
  • Kim J, Hayton WL, Robinson JM, et al. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007 Feb;122(2):146–155. doi: 10.1016/j.clim.2006.09.001
  • Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5512–5516. doi: 10.1073/pnas.93.11.5512
  • Guillon A, Pardessus J, Lhommet P, et al. Exploring the fate of inhaled monoclonal antibody in the lung parenchyma by microdialysis. MAbs. 2019 Feb;11(2):297–304. doi: 10.1080/19420862.2018.1556081
  • Passot C, Azzopardi N, Renault S, et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs. 2013 Jul;5(4):614–619. doi: 10.4161/mabs.24815
  • Dalloneau E, Baroukh N, Mavridis K, et al. Downregulation of the neonatal Fc receptor expression in non-small cell lung cancer tissue is associated with a poor prognosis. Oncotarget. 2016 Aug 23;7(34):54415–54429. doi: 10.18632/oncotarget.10074
  • Abuqayyas L, Balthasar JP. Application of knockout mouse models to investigate the influence of FcgammaR on the tissue distribution and elimination of 8C2, a murine IgG1 monoclonal antibody. Int J Pharm. 2012 Dec 15;439(1–2):8–16. doi: 10.1016/j.ijpharm.2012.09.042
  • Lux A, Yu X, Scanlan CN, et al. Impact of immune complex size and glycosylation on IgG binding to human FcgammaRs. J Immunol. 2013 Apr 15;190(8):4315–4323. doi: 10.4049/jimmunol.1200501
  • Council of Europe. Particulate contamination: sub-visible particles – PDG revision of general chapter released for public consultation in: healthcare EDftQoMa, editor. https://www.edqm.eu/en/-/2.9.19.-particulate-contamination-sub-visible-particles-pdg-revision-of-general-chapter-released-for-public-consultation-22019
  • FDA. Immunogenicity assessment for therapeutic protein products 2014. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-assessment-therapeutic-protein-products
  • Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv. 2019 Nov 15;37(7):107412. doi: 10.1016/j.biotechadv.2019.06.011
  • Bodier-Montagutelli E, Mayor A, Vecellio L, et al. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin Drug Deliv. 2018 Aug;15(8):729–736. doi: 10.1080/17425247.2018.1503251
  • Yildiz-Pekoz A, Ehrhardt C. Advances in pulmonary drug delivery. Pharmaceutics. 2020 Sep 23;12(10):911. doi: 10.3390/pharmaceutics12100911

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.