314
Views
0
CrossRef citations to date
0
Altmetric
Review

siRNA therapeutics: insights, challenges, remedies and future prospects

, , , , &
Pages 1167-1187 | Received 01 Oct 2022, Accepted 22 Aug 2023, Published online: 29 Aug 2023

References

  • Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101. doi: 10.1038/s41392-020-0207-x
  • Artiga A, Serrano-Sevilla I, De Matteis L, et al. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B. 2019;7(6):876–896. doi: 10.1039/C8TB02484G
  • Gao H, Cheng R, Santos HA. Nanoparticle‐mediated siRNA delivery systems for cancer therapy. VIEW. 2021;2(3):20200111. doi: 10.1002/VIW.20200111
  • Lee SH, Kang YY, Jang HE, et al. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv Drug Deliv Rev. 2016;104:78–92. doi: 10.1016/j.addr.2015.10.009
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555. doi: 10.1038/nrg3763
  • Zhou J, Shum KT, Burnett J, et al. Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals. 2013;6(1):85–107. doi: 10.3390/ph6010085
  • Palakurthi S, Yellepeddi VK, Vangara KK. Recent trends in cancer drug resistance reversal strategies using nanoparticles. Expert Opin Drug Deliv. 2012 Mar;9(3):287–301. doi: 10.1517/17425247.2012.665365
  • Gilbert W. Origin of life: the RNA world. Nature. 1986;319(6055):618–618. doi: 10.1038/319618a0
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–498. doi: 10.1038/35078107
  • Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: hope or hype? Trends Genet. 2005;21(5):289–297. doi: 10.1016/j.tig.2005.03.007
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi: 10.1038/35888
  • Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286(5441):950–952. doi: 10.1126/science.286.5441.950
  • Khelghati N, Soleimanpour Mokhtarvand J, Mir M, et al. The importance of co-delivery of nanoparticle-siRNA and anticancer agents in cancer therapy. Chem Biol Drug Des. 2021;97(4):997–1015. doi: 10.1111/cbdd.13824
  • Epstein W, Beckwith JR. Regulation of gene expression. Annu Rev Biochem. 1968;37(1):411–436. doi: 10.1146/annurev.bi.37.070168.002211
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457(7228):426–433. doi: 10.1038/nature07758
  • Patil VS, Zhou R, Rana TM. Gene regulation by non-coding RNAs. Crit Rev Biochem Mol Biol. 2014;49(1):16–32. doi: 10.3109/10409238.2013.844092
  • Saraswathy M, Gong S. Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Mater Today. 2014;17(6):298–306. doi: 10.1016/j.mattod.2014.05.002
  • Cavallaro G, Sardo C, Craparo EF, et al. Polymeric nanoparticles for siRNA delivery: production and applications. Int J Pharm. 2017;525(2):313–333. doi: 10.1016/j.ijpharm.2017.04.008
  • Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev. 2012;64(13):1508–1521. doi: 10.1016/j.addr.2012.08.014
  • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108. doi: 10.1038/nrg2504
  • Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015 Dec;14(12):843–856. doi: 10.1038/nrd4685
  • Gallas A, Alexander A, Davies MC, et al. Chemistry and formulations for siRNA therapeutics. Chem Soc Rev. 2013;42(20):7983–7997. doi: 10.1039/c3cs35520a
  • Sajid MI, Moazzam M, Kato S, et al. Overcoming barriers for siRNA therapeutics: from bench to bedside. Pharmaceuticals (Basel). 2020;13(10):294. doi: 10.3390/ph13100294
  • Matranga C, Tomari Y, Shin C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 2005;123(4):607–620. doi: 10.1016/j.cell.2005.08.044
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–138. doi: 10.1038/nrd2742
  • Tieu T, Wei Y, Cifuentes‐Rius A, et al. Overcoming barriers: clinical translation of siRNA nanomedicines. Adv Ther. 2021;4(9):2100108. doi: 10.1002/adtp.202100108
  • Juliano R, Bauman J, Kang H, et al. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6:686–695. doi: 10.1021/mp900093r
  • Setten RL, Rossi JJ, Han S. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–446. doi: 10.1038/s41573-019-0017-4
  • Liu Y, Song Z, Zheng N, et al. Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles. Nanoscale. 2018;10(32):15339–15349. doi: 10.1039/C8NR03976C
  • Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25(11):2692. doi: 10.3390/molecules25112692
  • Tatiparti K, Sau S, Kashaw SK, et al. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials. 2017;7(4):77. doi: 10.3390/nano7040077
  • Li D, Gao C, Kuang M, et al. Nanoparticles as Drug delivery systems of RNAi in cancer therapy. Molecules. 2021;26(8):2380. doi: 10.3390/molecules26082380
  • van de Water FM, Boerman OC, Wouterse AC, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–1397. doi: 10.1124/dmd.106.009555
  • Saw PE, Song EW. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63(4):485–500. doi: 10.1007/s11427-018-9438-y
  • Lorenzer C, Dirin M, Winkler AM, et al. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release. 2015;203:1–15.
  • Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev. 2019;144:133–147.
  • Narum SM, Le T, Le DP, et al. Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. Nanopart Biomed App. 2020;37–53. doi: 10.1016/b978-0-12-816662-8.00004-7
  • Zhou Y, Zhang C, Liang W. Development of RNAi technology for targeted therapy–a track of siRNA based agents to RNAi therapeutics. J Control Release. 2014;193:270–281. doi: 10.1016/j.jconrel.2014.04.044
  • Sun Y, Zhao Y, Zhao X, et al. Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules. 2017;22(10):1724. doi: 10.3390/molecules22101724
  • Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:374252. doi: 10.1155/2013/374252
  • Wang J, Lu Z, Wientjes MG, et al. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12(4):492–503. doi: 10.1208/s12248-010-9210-4
  • Young SW, Stenzel M, Yang JL. Nanoparticle-siRNA: a potential cancer therapy? Crit Rev Oncol Hematol. 2016;98:159–169. doi: 10.1016/j.critrevonc.2015.10.015
  • Babu A, Muralidharan R, Amreddy N, et al. Nanoparticles for siRNA-Based gene silencing in tumor therapy. IEEE Trans NanoBiosci. 2016;15(8):849–863. doi: 10.1109/TNB.2016.2621730
  • Williford JM, Wu J, Ren Y, et al. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng. 2014;16:347–370. doi: 10.1146/annurev-bioeng-071813-105119
  • Miele E, Spinelli GP, Miele E, et al. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637–3657. doi: 10.2147/IJN.S23696
  • Subhan MA, Torchilin VP. siRNA based drug design, quality, delivery and clinical translation. Nanomedicine. 2020;29:102239. doi: 10.1016/j.nano.2020.102239
  • Tomalia DA. In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res. 2009;11(6):1251–1310. doi: 10.1007/s11051-009-9632-z
  • Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 2006;34(1):322–333. doi: 10.1093/nar/gkj439
  • Sheikhi F, Fischer W, Haag R. Dendritic and lipid-based carriers for gene/siRNA delivery (a review). Curr Opin Solid State And Mater Sci. 2012;16(6):310–322. doi: 10.1016/j.cossms.2013.01.003
  • Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest. 2019;129(3):915–925. doi: 10.1172/JCI125228
  • Zhang X, Goel V, Robbie GJ. Pharmacokinetics of Patisiran, the first approved RNA interference therapy in patients with Hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2020;60(5):573–585. doi: 10.1002/jcph.1553
  • Crooke ST, Witztum JL, Bennett CF, et al. RNA-Targeted therapeutics. Cell Metab. 2018;27(4):714–739. doi: 10.1016/j.cmet.2018.03.004
  • Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222–229. doi: 10.1038/nbt.3802
  • Mo RH, Zaro JL, Ou JH, et al. Effects of lipofectamine 2000/siRNA complexes on autophagy in hepatoma cells. Mol Biotechnol. 2012;51(1):1–8. doi: 10.1007/s12033-011-9422-6
  • Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26(4):431–442. doi: 10.1038/nbt1396
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi: 10.3390/pharmaceutics9020012
  • Gote V, Pal D. Octreotide-targeted Lcn2 siRNA PEGylated liposomes as a treatment for metastatic breast cancer. Bioeng. 2021;8(4):44. doi: 10.3390/bioengineering8040044
  • Rossi JJ. RNAi therapeutics: SNALPing siRnas in vivo. Gene Ther. 2006;13(7):583–584. doi: 10.1038/sj.gt.3302661
  • Gallarate M, Battaglia L, Peira E, et al. Peptide-loaded solid lipid nanoparticles prepared through coacervation technique. Int J Chem Eng. 2011;2011(7):1–6. doi: 10.1155/2011/132435
  • Sarisozen C, Salzano G, Torchilin VP. Lipid-based siRNA delivery systems: challenges, promises and solutions along the long journey. Curr Pharm Biotechnol. 2016;17(8):728–740. doi: 10.2174/1389201017666160401145319
  • Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRnas. Nat Biotechnol. 2005;23(8):1002–1007. doi: 10.1038/nbt1122
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006 May 4;441(7089):111–114. doi: 10.1038/nature04688
  • Geisbert TW, Lee AC, Robbins M, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010;375(9729):1896–1905. doi: 10.1016/S0140-6736(10)60357-1
  • Coutinho MF, Santos JI, Mendonça LS, et al. Lysosomal storage disease-associated neuropathy: targeting stable nucleic acid lipid particle (SNALP)-formulated siRnas to the brain as a therapeutic approach. Int J Mol Sci. 2020;21(16):5732. doi: 10.3390/ijms21165732
  • Mills KA, Quinn JM, Roach ST, et al. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts. Sci Rep. 2019;9(1):4762. doi: 10.1038/s41598-019-41122-3
  • Love KT, Mahon KP, Levins CG, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107(5):1864–1869. doi: 10.1073/pnas.0910603106
  • Khare P, Dave KM, Kamte YS, et al. Development of lipidoid nanoparticles for siRNA delivery to neural cells. AAPS J. 2021;24(1):8. doi: 10.1208/s12248-021-00653-2
  • Yu YH, Kim E, Park DE, et al. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm. 2012;80(2):268–273. doi: 10.1016/j.ejpb.2011.11.002
  • Kong WH, Park K, Lee MY, et al. Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials. 2013;34(2):542–551. doi: 10.1016/j.biomaterials.2012.09.067
  • O’Mary HL, Hanafy MS, Aldayel AM, et al. Effect of the ratio of betamethasone to TNF-α siRNA coencapsulated in solid lipid nanoparticles on the Acute proinflammatory activity of the nanoparticles. Mol Pharm. 2019;16(11):4496–4506. doi: 10.1021/acs.molpharmaceut.9b00629
  • Chen C, Dong C, Shi S. Nanoparticle‐mediated siRNA delivery and multifunctional modification strategies for effective cancer therapy. Adv Mater Technol. 2021;6(10):2001236. doi: 10.1002/admt.202001236
  • Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRna/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release. 2014;194:238–256. doi: 10.1016/j.jconrel.2014.09.001
  • Ho W, Zhang XQ, Xu X. Biomaterials in siRNA delivery: a comprehensive review. Adv Healthc Mater. 2016;5(21):2715–2731. doi: 10.1002/adhm.201600418
  • Akhtar S, Benter IF. Nonviral delivery of synthetic siRnas in vivo. J Clin Invest. 2007;117(12):3623–3632. doi: 10.1172/JCI33494
  • Winkler J. Oligonucleotide conjugates for therapeutic applications, Ther. Deliv. 2013;4:791–809. doi: 10.4155/tde.13.47
  • Oishi M, Nagasaki Y, Itaka K, et al. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc. 2005;127(6):1624–1625. doi: 10.1021/ja044941d
  • Khvalevsky EZ, Gabai R, Rachmut IH, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci. 2013;110(51):20723–20728. doi: 10.1073/pnas.1314307110
  • Tai W. Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules. 2019;24(12):2211. doi: 10.3390/molecules24122211
  • Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv. 2011;8(4):521–536. doi: 10.1517/17425247.2011.559223
  • Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172(1):207–218. doi: 10.1016/j.jconrel.2013.08.005
  • Shajari N, Mansoori B, Davudian S, et al. Overcoming the challenges of siRNA delivery: nanoparticle strategies. Curr Drug Deliv. 2017;14(1):36–46. doi: 10.2174/1567201813666160816105408
  • Howard KA, Paludan SR, Behlke MA, et al. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17(1):162–168. doi: 10.1038/mt.2008.220
  • Salehi Khesht AM, Karpisheh V, Sahami Gilan P, et al. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int j biol macromol. 2021;186:849–863. doi: 10.1016/j.ijbiomac.2021.07.034
  • Chaturvedi K, Ganguly K, Kulkarni AR, et al. Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin Drug Deliv. 2011;8(11):1455–1468. doi: 10.1517/17425247.2011.610790
  • Heidel JD, Yu Z, Liu JY, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A. 2007;104(14):5715–5721. doi: 10.1073/pnas.0701458104
  • Mendonça MCP, Cronin MF, Cryan JF, et al. Modified cyclodextrin-based nanoparticles mediated delivery of siRNA for huntingtin gene silencing across an in vitro BBB model. Eur J Pharm Biopharm. 2021;169:309–318. doi: 10.1016/j.ejpb.2021.11.003
  • Mousazadeh H, Bonabi E, Zarghami N. Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym. 2022;276:118747. doi: 10.1016/j.carbpol.2021.118747
  • Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61(10):850–862. doi: 10.1016/j.addr.2009.04.018
  • Takei Y. siRNA-Based Drug targeting human Bcl-xL against cancers. Methods Mol Biol. 2019;1974:31–40.
  • Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 2011;21(3):133–147. doi: 10.1089/nat.2011.0293
  • Tan PH, Yang LC, Shih HC, et al. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Thera. 2004;12(1):59–66. doi: 10.1038/sj.gt.3302376
  • Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12(5):461–466. doi: 10.1038/sj.gt.3302425
  • Schiffelers M, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32(19):e149–e149. doi: 10.1093/nar/gnh140
  • Yang S, Wang D, Zhang X, et al. cRGD peptide-conjugated polyethylenimine-based lipid nanoparticle for intracellular delivery of siRNA in hepatocarcinoma therapy. Drug Deliv. 2021;28(1):995–1006. doi: 10.1080/10717544.2021.1928794
  • Wu ZW, Chien CT, Liu CY, et al. Recent progress in copolymer-mediated siRNA delivery. J Drug Target. 2012;20(7):551–560. doi: 10.3109/1061186X.2012.699057
  • Katas H, Cevher E, Alpar HO. Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Int J Pharm. 2009;369(1–2):144–154. doi: 10.1016/j.ijpharm.2008.10.012
  • Woodrow KA, Cu Y, Booth CJ, et al. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8(6):526–533. doi: 10.1038/nmat2444
  • Jensen DM, Cun D, Maltesen MJ, et al. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release. 2010;142(1):138–145. doi: 10.1016/j.jconrel.2009.10.010
  • Pho-Iam T, Punnakitikashem P, Somboonyosdech C, et al. PLGA nanoparticles containing α-fetoprotein siRNA induce apoptosis and enhance the cytotoxic effects of doxorubicin in human liver cancer cell line. Biochem Biophys Res Commun. 2021;553:191–197. doi: 10.1016/j.bbrc.2021.03.086
  • Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15(5–6):171–185. doi: 10.1016/j.drudis.2010.01.009
  • Dwivedi P, Tekade RK, Jain NK. Nanoparticulate carrier mediated intranasal delivery of insulin for the restoration of memory signaling in alzheimer’s disease. Curr Nanosci. 2013;9(1):46–55. doi: 10.2174/1573413711309010010
  • Alper J. Rising chemical ‘stars’ could play many roles. Science. 1991;251(5001):1562–1564. doi: 10.1126/science.2011736
  • Lee JH, Cha KE, Kim MS, et al. Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol Lett. 2009;190(2):202–207. doi: 10.1016/j.toxlet.2009.07.018
  • Jain A, Mahira S, Majoral JP, et al. Dendrimer mediated targeting of siRNA against polo-like kinase for the treatment of triple negative breast cancer. J Biomed Mater Res A. 2019;107(9):1933–1944. doi: 10.1002/jbm.a.36701
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.
  • Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond). 2015;10(14):2199–2228. doi: 10.2217/nnm.15.61
  • Jensen SA, Day ES, Ko CH, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med. 2013;5(209). doi: 10.1126/scitranslmed.3006839
  • Cutler JI, Auyeung E, Mirkin CA. Spherical nucleic acids. J Am Chem Soc. 2012;134(3):1376–1391. doi: 10.1021/ja209351u
  • Zhuang M, Jiang S, Gu A, et al. Radiosensitizing effect of gold nanoparticle loaded with small interfering RNA-SP1 on lung cancer. Transl Oncol. 2021;14(12):101210. doi: 10.1016/j.tranon.2021.101210
  • Ku SH, Kim K, Choi K, et al. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy. Adv Healthc Mater. 2014;3(8):1182–1193. doi: 10.1002/adhm.201300607
  • Nosrati H, Salehiabar M, Fridoni M, et al. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor. Sci Rep. 2019;9(1):7173. doi: 10.1038/s41598-019-43650-4
  • Yang Z, Duan J, Wang J, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomedicine. 2018;13:1851–1865. doi: 10.2147/IJN.S155537
  • Slowing I, Viveroescoto L, Wu C, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–1288. doi: 10.1016/j.addr.2008.03.012
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–1534. doi: 10.1002/adma.201104763
  • Ovejero Paredes K, Díaz-García D, García-Almodóvar V, et al. Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer. Cancers (Basel). 2020;12(1):187. doi: 10.3390/cancers12010187
  • Li X, Xie QR, Zhang J, et al. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials. 2011;32(35):9546–9556. doi: 10.1016/j.biomaterials.2011.08.068
  • Heidari R, Khosravian P, Mirzaei SA, et al. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-00085-0
  • Tieu T, Alba M, Elnathan R, et al. Theranostics: advances in porous silicon-based nanomaterials for diagnostic and therapeutic applications (Adv. Therap. 1/2019). Adv Therap. 2019;2(1):1970001. doi: 10.1002/adtp.201970001
  • Joo J, Kwon EJ, Kang J, et al. Porous silicon–graphene oxide core–shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz. 2016;1(5):407–414. doi: 10.1039/C6NH00082G
  • Tieu T, Wojnilowicz M, Huda P, et al. Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Biomater Sci. 2021;9(1):133–147. doi: 10.1039/D0BM01335H
  • Hong G, Diao S, Antaris AL, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115(19):10816–10906. doi: 10.1021/acs.chemrev.5b00008
  • Yang Y, Li J, Liu F, et al. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol Ther. 2012;20(3):609–615. doi: 10.1038/mt.2011.270
  • Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv Drug Deliv Rev. 2013;65(15):2023–2033. doi: 10.1016/j.addr.2013.10.003
  • Kofoed Andersen C, Khatri S, Hansen J, et al. Carbon nanotubes-Potent carriers for targeted Drug delivery in Rheumatoid arthritis. Pharmaceutics. 2021;13(4):453. doi: 10.3390/pharmaceutics13040453
  • Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014 Jun 11;4(9):872–892. doi: 10.7150/thno.9404
  • Yang YY, Zhang W, Liu H, et al. Cell-penetrating peptide-modified graphene oxide nanoparticles loaded with Rictor siRNA for the treatment of triple-negative breast cancer. Drug Des Devel Ther. 2021;15:4961–4972. doi: 10.2147/DDDT.S330059
  • Ramasamy T, Munusamy S, Ruttala HB, et al. Smart nanocarriers for the delivery of nucleic acid‐based therapeutics: a comprehensive review. Biotechnol J. 2020;16(2):1900408. doi: 10.1002/biot.201900408
  • Suma T, Miyata K, Anraku Y, et al. Smart multilayered assembly for biocompatible siRNA delivery featuring dissolvable silica, endosome-disrupting polycation, and detachable PEG. ACS Nano. 2012;6(8):6693–6705. doi: 10.1021/nn301164a
  • Pittella F, Zhang M, Lee Y, et al. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials. 2011;32(11):3106–3114. doi: 10.1016/j.biomaterials.2010.12.057
  • Kakizawa Y, Furukawa S, Ishii A, et al. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J Control Release. 2006;111(3):368–370. doi: 10.1016/j.jconrel.2006.01.004
  • Li J, Chen YC, Tseng YC, et al. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010;142(3):416–421. doi: 10.1016/j.jconrel.2009.11.008
  • Zhang M, Ishii A, Nishiyama N, et al. Pegylated calcium phosphate nanocomposites as Smart environment-sensitive carriers for siRNA delivery. Adv Mater. 2009;21(34):3520–3525. doi: 10.1002/adma.200800448
  • Kara G, Parlar A, Cakmak MC, et al. Silencing of survivin and cyclin B1 through siRNA-loaded arginine modified calcium phosphate nanoparticles for non-small-cell lung cancer therapy. Colloids Surf B. 2020;196:111340. doi: 10.1016/j.colsurfb.2020.111340
  • Derfus AM, Chen AA, Min DH, et al. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007;18(5):1391–1396. doi: 10.1021/bc060367e
  • Kim MW, Jeong HY, Kang SJ, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRnas and quantum dots for Theranostics of triple-negative breast cancer. Theranostics. 2019;9(3):837–852. doi: 10.7150/thno.30228
  • Liu D, Huxford RC, Lin W. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew Chem Int Ed Engl. 2011;50(16):3696–3700. doi: 10.1002/anie.201008277
  • Zhang X, Liang T, Ma Q. Layer-by-layer assembled nano-drug delivery systems for cancer treatment. Drug Deliv. 2021 Dec;28(1):655–669. doi: 10.1080/10717544.2021.1905748
  • Muthu MS, Leong DT, Mei L, et al. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660–677. doi: 10.7150/thno.8698
  • James SL. Metal-organic frameworks. Chem Soc Rev. 2003;32(5):276. doi: 10.1039/b200393g
  • Horcajada P, Serre C, Vallet-Regí M, et al. Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed Engl. 2006;45(36):5974–5978. doi: 10.1002/anie.200601878
  • Wang Z, Cohen SM. Postsynthetic modification of metal–organic frameworks. Chem Soc Rev. 2010;38(5):1315. doi: 10.1039/b802258p
  • Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks. Science. 2010;329(5990):424–428. doi: 10.1126/science.1192160
  • He C, Lu K, Liu D, et al. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRnas to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136(14):5181–5184. doi: 10.1021/ja4098862
  • Baran-Rachwalska P, Torabi-Pour N, Sutera FM, et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J Control Release. 2020;326:192–202. doi: 10.1016/j.jconrel.2020.07.004
  • Cristofolini T, Dalmina M, Sierra JA, et al. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. Mater Sci Eng C. 2020;109:110555. doi: 10.1016/j.msec.2019.110555
  • Xiao D, Li Y, Tian T, et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl Mater Inter. 2021;13(5):6109–6118. doi: 10.1021/acsami.0c23005
  • Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(Pt 8):1183–1189. doi: 10.1242/jcs.066399
  • Dobrovolskaia MA, Aggarwal P, Hall JB, et al. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–495. doi: 10.1021/mp800032f
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–818. doi: 10.1016/j.drudis.2006.07.005
  • Merritt WM, Lin YG, Spannuth WA, et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst. 2008;100(5):359–372. doi: 10.1093/jnci/djn024
  • Adams D, Coelho T, Obici L, et al. Rapid progression of familial amyloidotic polyneuropathy: a multinational natural history study. Neurology. 2015;85(8):675–682. doi: 10.1212/WNL.0000000000001870
  • Balwani M, Sardh E, Ventura P, et al. Phase 3 trial of RNAi therapeutic Givosiran for Acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–2301. doi: 10.1056/NEJMoa1913147
  • Bawa R. Handbook of clinical nanomedicine : law, business, regulation, safety and risk. Singapore: Pan Stanford Publishing; 2016. doi: 10.1201/b19910
  • Kelly B. Nanomedicines: regulatory challenges and risks ahead. Regul Aff Pharma. 2010;10:4–17.
  • Soares S, Sousa J, Pais A, et al. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360
  • Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–218. doi: 10.1089/adt.2014.573
  • Sharma HS, Hussain S, Schlager J, et al. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl. 2010;106:359–364.
  • Limaye V, Fortwengel G, Limaye D. Regulatory roadmap for nanotechnology based medicines. Int J Drug Regul Aff. 2018;2(4):33–41. doi: 10.22270/ijdra.v2i4.151
  • Hattab D, Gazzali AM, Bakhtiar A. Clinical advances of siRNA-Based nanotherapeutics for cancer treatment. Pharmaceutics. 2021;13(7):1009. doi: 10.3390/pharmaceutics13071009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.