89
Views
0
CrossRef citations to date
0
Altmetric
Review

Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer

, , , , &
Pages 309-324 | Received 24 Nov 2023, Accepted 25 Jan 2024, Published online: 31 Jan 2024

References

  • Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229. doi: 10.1124/pr.56.2.6
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58. doi: 10.1038/nrc706
  • Yoon S, Huang KW, Andrikakou P, et al. Targeted delivery of C/EBPalpha-saRNA by RNA aptamers shows anti-tumor effects in a mouse model of advanced PDAC. Mol Ther Nucleic Acids. 2019;18:142–154. doi: 10.1016/j.omtn.2019.08.017
  • El-Tanani M, Platt-Higgins A, Nsairat H, et al. Development and validation of ran as a prognostic marker in stage I and stage II primary breast cancer. Life Sci. 2023;329:121964. doi: 10.1016/j.lfs.2023.121964
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi: 10.1016/j.addr.2012.09.037
  • Sharma AK, Gothwal A, Kesharwani P, et al. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today. 2017;22(2):314–326. doi: 10.1016/j.drudis.2016.09.013
  • Al-Samydai A, Al Qaraleh M, Al Azzam KM, et al. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy. Heliyon. 2023;9(6):e17267. doi: 10.1016/j.heliyon.2023.e17267
  • Kutkut M, Shakya AK, Nsairat H, et al. Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib. J Appl Pharm Sci. 2023;13(6):165–178. doi: 10.7324/JAPS.2023.110512
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–64. doi: 10.1002/anie.201403036
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60. doi: 10.1038/nrd1632
  • Srivastava A, Wang Y, Huang R, et al. Human genome meeting 2016: Houston, TX, USA. 28 February - 2 March 2016. Hum Genomics. 2016;10 Suppl 1(Suppl S1):12. doi: 10.1186/s40246-016-0063-5
  • Mehdizadehtapeh L, Obakan YerlIkaya P. Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turk J Biol. 2021;45(1):1–16. doi: 10.3906/biy-2010-62
  • Fulton MD, Najahi-Missaoui W. Liposomes in cancer therapy: how did we start and where are we Now. Int J Mol Sci. 2023;24(7):7. doi: 10.3390/ijms24076615
  • Park H-B, Kim Y-J, Lee S-M, et al. Dual drug-loaded liposomes for synergistic efficacy in MCF-7 breast cancer cells and cancer stem cells. Biomed Sci Lett. 2019;25(2):159–169. doi: 10.15616/BSL.2019.25.2.159
  • Tufail M, Cui J, Wu C. Breast cancer: molecular mechanisms of underlying resistance and therapeutic approaches. Am J Cancer Res. 2022;12(7):2920–2949.
  • Piombino C, Tonni E, Oltrecolli M, et al. Immunotherapy in urothelial cancer: current status and future directions. Expert Rev Anticancer Ther. 2023:1–15. doi: 10.3390/cancers15204945
  • Zhou X, Liu R, Qin S, et al. Current status and future directions of nanoparticulate strategy for cancer immunotherapy. Curr Drug Metab. 2016;17(8):755–762. doi: 10.2174/1389200217666160714095722
  • Aljihani SA, Alehaideb Z, Alarfaj RE, et al. Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi J Biol Sci. 2020;27(11):3065–3071. doi: 10.1016/j.sjbs.2020.09.012
  • Andra V, Pammi SVN, Bhatraju L, et al. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience. 2022;12(1):274–291. doi: 10.1007/s12668-022-00941-x
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(4):12. doi: 10.3390/pharmaceutics9020012
  • Barenholz Y. Doxil(r)–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134. doi: 10.1016/j.jconrel.2012.03.020
  • Nsairat H, Alshaer W, Lafi Z, et al. Development and validation of reversed-phase-HPLC method for simultaneous quantification of fulvestrant and disulfiram in liposomes. Bioanalysis. 2023;15(23):1393–1405. doi: 10.4155/bio-2023-0137
  • Al-Ekaid NM, Al-Samydai AM, Al-Deeb I, et al. Preparation, characterization, and anticancer activity of PEGylated nano liposomal loaded with rutin against human carcinoma cells (HT-29). Chem Biodivers. 2023;20(11):e202301167. doi: 10.1002/cbdv.202301167
  • Nsairat H, Ibrahim AA, Jaber AM, et al. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res. 2023;1–25. doi: 10.1080/08982104.2023.2226216
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003. doi: 10.1038/nmat3776
  • Goenka A, Khan F, Verma B, et al. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 2023;43(5):525–561. doi: 10.1002/cac2.12416
  • Lainetti PF, Leis-Filho AF, Laufer-Amorim R, et al. Mechanisms of resistance to chemotherapy in breast cancer and possible targets in drug delivery systems. Pharmaceutics. 2020;12(12):1193. doi: 10.3390/pharmaceutics12121193
  • El-Tanani M, Nsairat H, Aljabali AA, et al. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci. 2023;323:121662. doi: 10.1016/j.lfs.2023.121662
  • El-Tanani M, Nsairat H, Mishra V, et al. Ran GTPase and its importance in cellular signaling and malignant phenotype. Int J Mol Sci. 2023;24(4):3065. Online. doi: 10.3390/ijms24043065
  • El-Tanani M, Nsairat H, Matalka II, et al. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol. 2023;40(8):225. doi: 10.1007/s12032-023-02101-x
  • Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist (Alhambra, Calif). 2019;2(2):141–160. doi: 10.20517/cdr.2019.10
  • Dong Y, Liao H, Yu J, et al. Incorporation of drug efflux inhibitor and chemotherapeutic agent into an inorganic/organic platform for the effective treatment of multidrug resistant breast cancer. J Nanobiotechnol. 2019;17(1):125. doi: 10.1186/s12951-019-0559-y
  • Suttana W, Mankhetkorn S, Poompimon W, et al. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin a and siamois polyphenols. Mol Cancer. 2010;9(1):99. doi: 10.1186/1476-4598-9-99
  • Nanayakkara AK, Vogel PD, Wise JG, et al. Prolonged inhibition of P-glycoprotein after exposure to chemotherapeutics increases cell mortality in multidrug resistant cultured cancer cells. PLoS One. 2019;14(6):e0217940. doi: 10.1371/journal.pone.0217940
  • Sánchez-Suárez P, Ostrosky-Wegman P, Gallegos F, et al. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res. 2008;640(1–2):8–15. doi: 10.1016/j.mrfmmm.2007.11.008
  • Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157. doi: 10.3389/fgene.2015.00157
  • Adamo A, Collis SJ, Adelman CA, et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Molecular Cell. 2010;39(1):25–35. doi: 10.1016/j.molcel.2010.06.026
  • Kumar S, Gahramanov V, Patel S, et al. Evolution of resistance to irinotecan in cancer cells involves generation of topoisomerase-guided mutations in non-coding genome that reduce the chances of DNA breaks. Int J Mol Sci. 2023;24(10):8717. Online. doi: 10.3390/ijms24108717
  • Sun J, Zhao J, Yang Z, et al. Identification of gene signatures and potential therapeutic targets for acquired chemotherapy resistance in gastric cancer patients. J Gastrointest Oncol. 2021;12(2):407–422. doi: 10.21037/jgo-21-81
  • Sumantran VN, Ealovega MW, Nuñez G, et al. Overexpression of bcl-XS sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res. 1995;55(12):2507–10.
  • Zhang GJ, Kimijima I, Onda M, et al. Tamoxifen-induced apoptosis in breast cancer cells relates to down-regulation of bcl-2, but not bax and bcl-X(L), without alteration of p53 protein levels. Clin Cancer Res. 1999;5(10):2971–2977.
  • Lafi Z, Alshaer W, Hatmal MMM, et al. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv. 2021;11(47):29164–29177. doi: 10.1039/D1RA05138E
  • Nsairat H, Mahmoud IS, Odeh F, et al. Grafting of anti-nucleolin aptamer into preformed and remotely loaded liposomes through aptamer-cholesterol post-insertion. RSC Adv. 2020;10(59):36219–36229. doi: 10.1039/D0RA07325C
  • Wu CP, Hsiao SH, Huang YH, et al. Sitravatinib Sensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. Cancers (Basel). 2020;12(1):195. doi: 10.3390/cancers12010195
  • O’Connor D, Sibson K, Caswell M, et al. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia. Br J Haematol. 2011;154(4):482–5. doi: 10.1111/j.1365-2141.2011.08752.x
  • Kurrey NK, Jalgaonkar SP, Joglekar AV, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells (Dayton, Ohio). 2009;27(9):2059–68. doi: 10.1002/stem.154
  • Huang D, Duan H, Huang H, et al. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci Rep. 2016;6(1):20502. doi: 10.1038/srep20502
  • Mansoori B, Mohammadi A, Davudian S, et al. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–348. doi: 10.15171/apb.2017.041
  • Haggag Y, Abu Ras B, El-Tanani Y, et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Delivery. 2020;17(11):1655–1669. doi: 10.1080/17425247.2020.1813714
  • AlSawaftah N, Pitt WG, Husseini GA. Dual-targeting and stimuli-triggered liposomal drug delivery in cancer treatment.ACS Pharmacol Transl Sci. 2021;4(3):1028–1049. doi: 10.1021/acsptsci.1c00066
  • Varkey B. Principles of clinical ethics and their application to practice. Med Princ Pract. 2021;30(1):17–28. doi: 10.1159/000509119
  • Vieira IR, Tessaro L, Lima AK, et al. Recent progress in nanotechnology improving the therapeutic potential of polyphenols for cancer. Nutrients. 2023;15(14):3136. [Online]. doi: 10.3390/nu15143136
  • Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22(1):169. doi: 10.1186/s12943-023-01865-0
  • Alshaer W, Zraikat M, Amer A, et al. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv. 2019;9(53):30976–30988. doi: 10.1039/C9RA05636J
  • Odeh F, Nsairat H, Alshaer W, et al. Remote loading of curcumin-in-modified β-cyclodextrins into liposomes using a transmembrane pH gradient. RSC Adv. 2019;9(64):37148–37161. doi: 10.1039/C9RA07560G
  • Odeh F, Nsairat H, Alshaer W, et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules. 2019;25(1):3. Online. doi: 10.3390/molecules25010003
  • Nsairat H, Alshaer W, Odeh F, et al. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano. 2023;11:100132. doi: 10.1016/j.onano.2023.100132
  • Nsairat H, Khater D, Sayed U, et al. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi: 10.1016/j.heliyon.2022.e09394
  • Alshaer W, Nsairat H, Lafi Z, et al. Quality by design approach in liposomal formulations: robust product development. Molecules. 2022;28(1):10. Online. doi: 10.3390/molecules28010010
  • Nsairat H, Lafi Z, Al-Sulaibi M, et al. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chem. 2023;424:136438. doi: 10.1016/j.foodchem.2023.136438
  • Mahmood TH, Al-Samydai A, Sulaibi MA, et al. Development of pegylated nano-phytosome formulation with oleuropein and rutin to compare anti-colonic cancer activity with Olea Europaea leaves extract. Chem Biodivers. 2023;20(8):e202300534. doi: 10.1002/cbdv.202300534
  • Nsairat H, Khater D, Odeh F, et al. Chapter 12 - phytosomes: a modernistic approach to the delivery of herbal drugs. In: Nayak AK, Hasnain MS, Laha B, and Maiti S, editors Advanced and modern approaches for drug delivery. Academic Press; 2023. p. 301–355.
  • Nel J, Elkhoury K, Velot É, et al. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater. 2023;24:401–437. doi: 10.1016/j.bioactmat.2022.12.027
  • Douer D. Efficacy and safety of vincristine sulfate liposome injection in the treatment of adult acute lymphocytic leukemia. Oncology. 2016;21(7):840–847. doi: 10.1634/theoncologist.2015-0391
  • Tenchov R, Bird R, Curtze AE, et al. Lipid nanoparticles─From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–17015. doi: 10.1021/acsnano.1c04996
  • Lotem M, Hubert A, Lyass O, et al. Skin toxic effects of polyethylene glycol–coated liposomal doxorubicin. Arch Dermatol. 2000;136(12):1475–1480. doi: 10.1001/archderm.136.12.1475
  • Brown S, Khan DR. The treatment of breast cancer using liposome technology. J Drug Deliv. 2012;2012:1–6. doi: 10.1155/2012/212965
  • Ferrandina G, Corrado G, Licameli A, et al. Pegylated liposomal doxorubicin in the management of ovarian cancer. Ther Clin Risk Manag. 2010;6:463–483. doi: 10.2147/TCRM.S3348
  • Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest. 2001;19(4):424–36. doi: 10.1081/CNV-100103136
  • Nsairat H, Al-Sulaibi M, Alshaer W. Pegylated nanoassemblies composed of edelfosine and fulvestrant drugs: in vitro antiproliferative effect against breast cancer cells. J Drug Delivery Sci Technol. 2023;85:104612. doi: 10.1016/j.jddst.2023.104612
  • Mitra AK, Agrahari V, Mandal A, et al. Novel delivery approaches for cancer therapeutics. J Control Release. 2015;219:248–268. doi: 10.1016/j.jconrel.2015.09.067
  • Shanmugam V, Chien YH, Cheng YS, et al. Oligonucleotides–assembled Au nanorod-assisted cancer photothermal ablation and combination chemotherapy with targeted dual-drug delivery of doxorubicin and cisplatin prodrug. ACS Appl Mater Inter. 2014;6(6):4382–4393. doi: 10.1021/am5000905
  • Morales-Cruz M, Delgado Y, Castillo B, et al. Smart targeting to improve cancer therapeutics. Drug Design Develop Therapy 2019, 13, 3753–3772. 10.2147/DDDT.S219489.
  • Li L, Wang Q, Zhang X, et al. Dual-targeting liposomes for enhanced anticancer effect in somatostatin receptor II-positive tumor model. Nanomedicine. 2018;13(17):2155–2169. doi: 10.2217/nnm-2018-0115
  • Dong S, Bi Y, Sun X, et al. Dual-loaded liposomes tagged with hyaluronic acid have synergistic effects in triple-negative breast cancer. Small. 2022;18(16):e2107690. doi: 10.1002/smll.202107690
  • Park H-B, Kim Y-J, Lee S-M, et al. Dual drug-loaded liposomes for synergistic efficacy in MCF-7 breast cancer cells and cancer stem cells. Biomed Sci Lett. 2019;25(2):159–169. doi: 10.15616/BSL.2019.25.2.159
  • Tang X, Li A, Xie C, et al. The PI3K/mTOR dual inhibitor BEZ235 nanoparticles improve radiosensitization of hepatoma cells through apoptosis and regulation DNA repair pathway. Nanoscale Res Lett. 2020;15(1):63. doi: 10.1186/s11671-020-3289-z
  • Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov. 2020;6:100024. doi: 10.1016/j.medidd.2020.100024
  • Chen Y, Liu L, Li J, et al. Effects of long noncoding RNA (linc-VLDLR) existing in extracellular vesicles on the occurrence and multidrug resistance of esophageal cancer cells. Pathol Res Pract. 2019;215(3):470–477. doi: 10.1016/j.prp.2018.12.033
  • Gokhale PC, Radhakrishnan B, Husain SR, et al. An improved method of encapsulation of doxorubicin in liposomes: pharmacological, toxicological and therapeutic evaluation. Br J Cancer. 1996;74(1):43–8. doi: 10.1038/bjc.1996.313
  • Bartelink IH, Jones EF, Shahidi-Latham SK, et al. Tumor drug penetration measurements could Be the neglected piece of the personalized cancer treatment puzzle. Clin Pharm Ther. 2019;106(1):148–163. doi: 10.1002/cpt.1211
  • Colapicchioni V, Tilio M, Digiacomo L, et al. Personalized liposome-protein corona in the blood of breast, gastric and pancreatic cancer patients. Int J Biochem Cell Biol. 2016;75:180–187. doi: 10.1016/j.biocel.2015.09.002
  • Digiacomo L, Giulimondi F, Pozzi D, et al. A proteomic study on the personalized protein corona of liposomes. Relevance for early diagnosis of pancreatic DUCTAL adenocarcinoma and biomarker detection. J Nanother. 2021;2(2):82–93. Online. doi: 10.3390/jnt2020006
  • Nguyen VD, Min HK, Kim CS, et al. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;173:539–548. doi: 10.1016/j.colsurfb.2018.10.013
  • Li T, Amari T, Semba K, et al. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine. 2017;13(3):1219–1227. doi: 10.1016/j.nano.2016.11.018
  • Yao Y, Wang T, Liu Y, et al. Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. artificial cells, nanomedicine, and biotechnology. Artific Cells Nanomed Biotechnol. 2019;47(1):1374–1383. doi: 10.1080/21691401.2019.1596943
  • Pacheco ARF, Cardoso BD, Pires A, et al. Development of pH-sensitive magnetoliposomes containing shape anisotropic nanoparticles for potential application in combined cancer therapy. Nanomaterials (Basel, Switzerland). 2023;13(6):1051. doi: 10.3390/nano13061051
  • Rodrigues ARO, Mendes PMF, Silva PML, et al. Solid and aqueous magnetoliposomes as nanocarriers for a new potential drug active against breast cancer. Colloids Surf B Biointerfaces. 2017;158:460–468. doi: 10.1016/j.colsurfb.2017.07.015
  • Ghosh R, De M. Liposome-based antibacterial delivery: an emergent approach to combat bacterial infections. ACS Omega. 2023;8(39):35442–35451. doi: 10.1021/acsomega.3c04893
  • Hu Q, Sun W, Wang C, et al. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. doi: 10.1016/j.addr.2015.10.022
  • Gradishar WJ, Meza LA, Amin B, et al. Capecitabine plus paclitaxel as front-line combination therapy for metastatic breast cancer: a multicenter phase II study. J Clin Oncol. 2004;22(12):2321–2327. doi: 10.1200/JCO.2004.12.128
  • Meng H, Mai WX, Zhang H, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7(2):994–1005. doi: 10.1021/nn3044066
  • Preeti M, Benu H, Sarwara A, et al. Mechanism-based suppression of cancer by targeting DNA-Replicating enzymes. Current Protein Pept Sci. 2023;24(1): doi: 10.2174/1389203724666230512144011
  • Chen M, Miao Y, Qian K, et al. Detachable liposomes combined immunochemotherapy for enhanced triple-negative breast cancer treatment through reprogramming of tumor-associated macrophages. Nano Lett. 2021;21(14):6031–6041. doi: 10.1021/acs.nanolett.1c01210
  • Ma W, Yang Y, Zhu J, et al. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv Mater (Deerfield Beach, Fla). 2022;34(46):e2109609. doi: 10.1002/adma.202109609
  • Munye MM, Ravi J, Tagalakis AD, et al. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep. 2015;5(1):9292. doi: 10.1038/srep09292
  • Tang B, Peng Y, Yue Q, et al. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem. 2020;193:112204. doi: 10.1016/j.ejmech.2020.112204
  • Zhang S, Guo N, Wan G, et al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnology. 2019;17(1):109. doi: 10.1186/s12951-019-0540-9
  • Vivek R, Nipun Babu V, Thangam R, et al. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces. 2013;111:117–23. doi: 10.1016/j.colsurfb.2013.05.018
  • Lee S, Song SJ, Lee J, et al. Cathepsin B-Responsive liposomes for controlled anticancer drug delivery in hep G2 cells. Pharmaceutics. 2020;12(9):876. doi: 10.3390/pharmaceutics12090876
  • Chiu GN, Abraham SA, Ickenstein LM, et al. Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release. 2005;104(2):271–288. doi: 10.1016/j.jconrel.2005.02.009
  • Andar AU, Hood RR, Vreeland WN, et al. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm Res. 2014;31(2):401–13. doi: 10.1007/s11095-013-1171-8
  • Teixeira S, Carvalho MA, Castanheira EMS. Functionalized liposome and albumin-based systems as carriers for poorly water-soluble anticancer drugs: an updated review. Biomedicines. 2022;10(2):486. doi: 10.3390/biomedicines10020486
  • Chen B, He XY, Yi XQ, et al. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl Mater Inter. 2015;7(28):15148–53. doi: 10.1021/acsami.5b03866
  • Li X, Diao W, Xue H, et al. Improved efficacy of doxorubicin delivery by a novel dual-ligand-modified liposome in hepatocellular carcinoma. Cancer Lett. 2020;489:163–173. doi: 10.1016/j.canlet.2020.06.017
  • Ni W, Li Z, Liu Z, et al. Dual-targeting nanoparticles: codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma. J Pharmaceut sci. 2019;108(3):1284–1295. doi: 10.1016/j.xphs.2018.10.042
  • Jiang J, Yang SJ, Wang JC, et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm. 2010;76(2):170–8. doi: 10.1016/j.ejpb.2010.06.011
  • Tracey SR, Smyth P, Barelle CJ, et al. Development of next generation nanomedicine-based approaches for the treatment of cancer: we’ve barely scratched the surface. Biochem Soc Trans. 2021;49(5):2253–2269. doi: 10.1042/BST20210343
  • Roces CB, Port EC, Daskalakis NN, et al. Rapid scale-up and production of active-loaded PEGylated liposomes. Int J Pharmaceut. 2020;586:119566. doi: 10.1016/j.ijpharm.2020.119566
  • Wallace TL, Larson JL, Bazemore SA, et al. The nonclinical safety evaluation of the anticancer drug Atragen® (liposomal all-trans-retinoic acid). Int J Toxicol. 2000;19(1):33–42. doi: 10.1080/109158100225024
  • Lyon PC, Griffiths LF, Lee J, et al. Clinical trial protocol for TARDOX: a phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J Ther Ultrasound. 2017;5(1):28. doi: 10.1186/s40349-017-0104-0
  • Lamichhane N, Udayakumar TS, D’Souza WD, et al. Liposomes: clinical applications and potential for image-guided drug delivery. Molecules. 2018;23(2):288. doi: 10.3390/molecules23020288
  • de Smet M, Langereis S, van den Bosch S, et al. SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Control Release. 2013;169(1–2):82–90. doi: 10.1016/j.jconrel.2013.04.005
  • Aloss K, Hamar P. Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Pharmaceutics. 2023;15(3):3. doi: 10.3390/pharmaceutics15030893
  • Mochalova EN, Egorova EA, Komarova KS, et al. Comparative study of nanoparticle blood circulation after forced clearance of own erythrocytes (mononuclear phagocyte system-cytoblockade) or administration of cytotoxic doxorubicin- or clodronate-loaded liposomes. Int J Mol Sci. 2023;24(13):10623. doi: 10.3390/ijms241310623
  • Manzari MT, Shamay Y, Kiguchi H, et al. Targeted drug delivery strategies for precision medicines. Nature Rev Mater. 2021;6(4):351–370. doi: 10.1038/s41578-020-00269-6
  • Fang S, Hou Y, Ling L, et al. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids Surf B Biointerfaces. 2018;166:235–244. doi: 10.1016/j.colsurfb.2018.02.046
  • Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B Biointerfaces. 2019;180:9–22. doi: 10.1016/j.colsurfb.2019.04.035
  • Chen H, Xing L, Guo H, et al. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy. Analyst. 2021;146(22):6893–6901. doi: 10.1039/D1AN01237A
  • Liu Y, Fang J, Kim Y-J, et al. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar Liposome enables synergistic antitumor activity. Mol Pharmaceut. 2014;11(5):1651–1661. doi: 10.1021/mp5000373
  • Orleth A, Mamot C, Rochlitz C, et al. Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Targeting. 2016;24(1):80–9. doi: 10.3109/1061186X.2015.1056189
  • Wu D, Vogus D, Krishnan V, et al. Optimized 5-fluorouridine prodrug for Co-loading with Doxorubicin in clinically relevant liposomes. Pharmaceutics. 2021;13(1):107. doi: 10.3390/pharmaceutics13010107
  • Knudsen KB, Northeved H, Kumar PE, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–477. doi: 10.1016/j.nano.2014.08.004
  • Lin CY, Javadi M, Belnap DM, et al. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine. 2014;10(1):67–76. doi: 10.1016/j.nano.2013.06.011
  • Ross JS, Slodkowska EA, Symmans WF, et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncology. 2009;14(4):320–368. doi: 10.1634/theoncologist.2008-0230
  • Janik M, Hanula M, Khachatryan K, et al. Liposomes, and micelles in polysaccharide carriers: applications in food technology applied sciences. Appl Sci. 2023;13(21):11610. Online. doi: 10.3390/app132111610
  • Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.
  • Cheng C, Peng S, Li Z, et al. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Adv. 2017;7(42):25978–25986. doi: 10.1039/C7RA02861J
  • Mohan A, Narayanan S, Sethuraman S, et al. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Bio Med Res Int. 2014;2014:424239. doi: 10.1155/2014/424239
  • Olopade OI, Grushko TA, Nanda R, et al. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res. 2008;14(24):7988–99. doi: 10.1158/1078-0432.CCR-08-1211
  • Jiang L, Zhou S, Zhang X, et al. Mitochondrion-specific dendritic lipopeptide liposomes for targeted sub-cellular delivery. Nat Commun. 2021;12(1):2390. doi: 10.1038/s41467-021-22594-2
  • Li S, Wang F, Li X, et al. Dipole orientation matters: longer-circulating choline phosphate than phosphocholine liposomes for enhanced tumor targeting. ACS Appl Mater Inter. 2017;9(21):17736–17744. doi: 10.1021/acsami.7b03160
  • Kou L, Huang H, Lin X, et al. Endocytosis of ATB(0,+)(SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer. Expert Opin Drug Delivery. 2020;17(3):395–405. doi: 10.1080/17425247.2020.1723544
  • Liliemark E, Sjöström B, Liliemark J, et al. Targeting of teniposide to the mononuclear phagocytic system (MPS) by incorporation in liposomes and submicron lipid particles; an autoradiographic study in mice. Leukemia Lymphoma. 1995;18(1–2):113–8. doi: 10.3109/10428199509064930
  • Gosk S, Moos T, Gottstein C, et al. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta - Biomembr. 2008;1778(4):854–63. doi: 10.1016/j.bbamem.2007.12.021
  • Abrishami M, Zarei-Ghanavati S, Soroush D, et al. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina (Philadelphia, Pa). 2009;29(5):699–703. doi: 10.1097/IAE.0b013e3181a2f42a
  • Seebacher NA, Krchniakova M, Stacy AE, et al. Tumour microenvironment stress promotes the development of drug resistance. Antioxidants (Basel). 2021;10(11):1801. doi: 10.3390/antiox10111801
  • Qin AC, Li Y, Zhou LN, et al. Dual PI3K-BRD4 Inhibitor SF1126 inhibits colorectal cancer cell growth in vitro and in vivo. Cell Physiol Biochem. 2019;52(4):758–768.
  • Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(6):738–746. doi: 10.1016/S1470-2045(16)00150-9
  • Ferguson LT, Hood ED, Shuvaeva T, et al. Dual affinity to RBCs and target cells (DART) enhances both organ- and cell type-targeting of intravascular nanocarriers. ACS Nano. 2022;16(3):4666–4683. doi: 10.1021/acsnano.1c11374
  • Guo B, Qu Y, Sun Y, et al. Co-delivery of gemcitabine and paclitaxel plus NanoCpG empowers chemoimmunotherapy of postoperative “cold” triple-negative breast cancer. Bioact Mater. 2023;25:61–72. doi: 10.1016/j.bioactmat.2023.01.014
  • Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. doi: 10.1038/nrc2618
  • Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26(5):485–98. doi: 10.3109/02656731003789284
  • Newman MS, Colbern GT, Working PK, et al. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol. 1999;43(1):1–7. doi: 10.1007/s002800050855
  • Chen JL, Wang H, Gao JQ, et al. Liposomes modified with polycation used for gene delivery: preparation, characterization and transfection in vitro. Int J Pharmaceut. 2007;343(1–2):255–61. doi: 10.1016/j.ijpharm.2007.05.045
  • Oliveira AC, Ferraz MP, Monteiro FJ, et al. Cationic liposome-DNA complexes as gene delivery vectors: development and behaviour towards bone-like cells. Acta Biomaterialia. 2009;5(6):2142–2151. doi: 10.1016/j.actbio.2009.02.019
  • Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6(1):66–77. doi: 10.1016/S1359-0294(00)00090-X
  • Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. doi: 10.3390/molecules27041372
  • Aryal S, Hu CM, Zhang L. Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small. 2010;6(13):1442–1448. doi: 10.1002/smll.201000631
  • Nikolova MP, Kumar EM, Chavali MS. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics. 2022;14(10):2195. doi: 10.3390/pharmaceutics14102195
  • Zhang X, Lei B, Wang Y, et al. Dual-sensitive on-off switch in liposome bilayer for controllable drug release. Langmuir. 2019;35(15):5213–5220. doi: 10.1021/acs.langmuir.8b04094
  • Liu Y, Chen XG, Yang PP, et al. Tumor microenvironmental pH and enzyme dual responsive polymer-liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromolecules. 2019;20(2):882–892. doi: 10.1021/acs.biomac.8b01510
  • Frew A. General principles of investigating and managing drug allergy. Br J Clin Pharmacol. 2011;71(5):642–646. doi: 10.1111/j.1365-2125.2011.03933.x
  • Molina-Mula J, Gallo-Estrada J. Impact of nurse-patient relationship on quality of care and patient autonomy in decision-making. Int J Environ Res Public Health. 2020;17(3):3. doi: 10.3390/ijerph17030835
  • Vodovozova EL, Moiseeva EV, Grechko GK, et al. Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model. Eur J Cancer. 2000;36(7):942–949. doi: 10.1016/S0959-8049(00)00029-0
  • Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnol. 2016;11(11):941–947. doi: 10.1038/nnano.2016.137
  • Zhao Y-P, Han J-F, Zhang F-Y, et al. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy. Drug Delivery. 2022;29(1):2269–2282. doi: 10.1080/10717544.2022.2096718
  • Zhao XB, Muthusamy N, Byrd JC, et al. Cholesterol as a bilayer anchor for PEGylation and targeting ligand in folate-receptor-targeted liposomes. J Pharmaceut sci. 2007;96(9):2424–35. doi: 10.1002/jps.20885
  • Khan AA, Allemailem KS, Almatroodi SA, et al. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech. 2020;10(4):163. doi: 10.1007/s13205-020-2144-3
  • Abu Ras B, Haggag Y, Isreb M, et al. Effect of process parameters on the critical attributes of the liposomal formulations. British J Pharm. 2022;7(2):S1–S2. doi: 10.5920/bjpharm.1172
  • Taetz S, Bochot A, Surace C, et al. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells. Oligonucleotides. 2009;19(2):103–116. doi: 10.1089/oli.2008.0168
  • Agrawal M, Tripathi DK, Saraf S, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77. doi: 10.1016/j.jconrel.2017.05.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.