337
Views
3
CrossRef citations to date
0
Altmetric
Review

Intravenous immunoglobulin: pharmacological properties and use in polyneuropathies

, &
Pages 1343-1358 | Received 06 May 2016, Accepted 13 Jul 2016, Published online: 22 Aug 2016

References

  • Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–728.
  • Imbach P, Barandun S, Baumgartner C, et al. High-dose intravenous gammaglobulin therapy of refractory, in particular idiopathic thrombocytopenia in childhood. Helv Paediatr Acta. 1981;36(1):81–86.
  • US Food and Drug Administration. Drugs; [ cited 2016 Apr 19]. Available from: http://www.fda.gov/Drugs/default.htm.
  • Scheinfeld NS. Intravenous immunoglobulin; [ cited 2016 Feb3]. Available from: http://emedicine.medscape.com/article/210367-overview#a2.
  • Buehler AM, Flato UP, Ferri CP, et al. Is there evidence for recommending specific intravenous immunoglobulin formulations? A systematic review of head-to-head randomized controlled trials. Europ J Pharmacol. 2015;747:96–104.
  • Gelfand EW. Intravenous immune globulin in autoimmune inflammatory disease. N Engl J Med. 2012;367:2015–2025.
  • Ballow M. The IgG molecule as a biological immune response modifier: mechanism of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immun. 2011;127(2):315–323.
  • Kaveri SV, Lecerf M, Saha C, et al. Intravenous immunoglobulin and immune response. Clin Exp Immunol. 2014;178:94–96.
  • Mitrevski M, Marrapodi R, Camponeschi A, et al. Immunomodulatory effects of intravenous immunoglobulin-assembling a jigsaw puzzle. Internat Trends Immunol. 2014. Available from: http://researchpub.org/journal/iti/number/vol2-no2/vol2-no2-1.pdf.
  • Silvergleid AJ, Ballow M. Overview of intravenous immune globulin (IVIG) therapy; [ cited 2016 Feb 23]. Available from: http://www.uptodate.com/contents/overview-of-intravenous-immune-globulin-ivig-therapy.
  • Bienvenu B, Cozon G, Hoarau C, et al. Does the route of immunoglobulin replacement therapy impact quality of life and satisfaction in patients with primary immunodeficiency? Insight from the French cohort “Visages”. Orphanet J Rare Dis. 2016. Epub 2016 Jun 22. doi:10.1186/s13023-016-0452-9.
  • Rajabally YA. Subcutaneous immunoglobulin therapy for inflammatory neuropathy: current evidence base and future prospects. J Neurol Neurosurg Psychiatry. 2014;85:631–637.
  • American Academy for Allergy Asthma and Immunology. Eight guiding principles for effective use of IVIG for patients with primary immunodeficiency; [ cited 2016 Jun 25]. Available from: https://www.aaaai.org/Aaaai/media/MediaLibrary/PDF%20Documents/Practice%20Resources/IVIG-guiding-principles.pdf.
  • Kuitwaard K, van Doorn PA, Vermeulen M. Serum IgG levels in IV immunoglobulin treated chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry. 2013;84:859–861.
  • Berger M, Mc Callus DE, Shin-Yi C. Rapid and reversible responses to IVIG in autoimmune neuromuscular diseases suggest mechanisms of action involving competition with functionally important autoantibodies. J Periph Nervous System. 2013;18:275–296.
  • Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–189. .
  • Hansen RJ, Balthasar JP. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood. 2002;100:2087–2093.
  • Li N. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blisteringdiseases. J Clin Invest. 2005;115:3440–3450.
  • Nimmerjahn F, Ravetch JV. FcγRs in health and disease. Curr Top Microbiol Immunol. 2011;350:105–125.
  • Tankersley DL. Dimer formation in immunoglobulin preparations and speculations on the mechanism of action of intravenous immune globulin in autoimmune diseases. Immunol Rev. 1994;139:159–172.
  • Ritter C, Bobylev I, Lehmann HC. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins. J Neuroinflammation. Epub 2015 Aug 14. doi:10.1186/s12974-015-0361-1.
  • Schaub A, Wymann S, Heller M, et al. Self-reactivity in the dimeric intravenous immunoglobulin fraction. Ann NY Acad Sci. 2007;1110:681–693.
  • Washburn N, Schwab I, Ortiz D, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA. 2015;112(11):1297–1306.
  • Sondermann P, Pincetic A, Maamary J, et al. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci USA. 2013;110(24):9868–9872.
  • Chen XX, Chen YQ, Ye S. Measuring decreased serum IgG sialylation: a novel clinical biomarker of lupus. Lupus. 2015;24(9):948–954.
  • Kaufman G, Massoud A, Dembele M, et al. Induction of regulatory T cells by intravenous immunoglobulin: a brige between adaptive and innate immunity. Front Immunol. 2015;6. Epub 2015 Sept 11. doi:10.3389/fimmu.2015.00469.
  • Anthony RM, Wermeling F, Karlsson MC, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA. 2008;105(50):19571–19578.
  • Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan. Ann NY Acad Sci. 2012;1253:170–180.
  • Pincetic A, Bournazos S, DiLillo DJ, et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15(8):707–716.
  • Campbell IK, Miescher S, Branch DR, et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation of basophils. J Immunol. 2014;192:5031–5038.
  • Sharma M, Schoindre Y, Hegde P, et al. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci Reports. 2014. Epub 2014 Jul 11. doi:10.1038/srep05672.
  • Nagelkerke SQ, Dekkers G, Kustiawan I, et al. Inhibition of FcγRIIB in human macrophages. Blood. 2014;124:3709–3718.
  • Othy S, Topcu S, Saha C, et al. Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin. Eur J Immunol. 2014;44:2059–2063.
  • Issekutz AC, Rowter D, Miescher S, et al. Intravenous IgG (IVIG) and subcutaneous IgG (SCIG) preparations have comparable inhibitory effect on IgG sialylation, monocytes or B cells. Clinical Immunol. 2015;160:123–132.
  • Kuitwaard K, de Gelder J, Tio-Gillen AP, et al. Pharmacokinetics of intravenous immunoglobulin and outcome in Guillain-Barre syndrome. Ann Neurol. 2009;66:597–603.
  • Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol. 2008;255:3–6.
  • Basta M, Van Goor F, Luccioli S, et al. F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;9:431–438.
  • Jang EJ, Nahm DH, Jang YJ. Mouse monoclonal autoantibodies penetrate mouse macrophage cells and stimulate NF-kappaB activation and TNF-alpha release. Immunol Lett. 2009;124:70–76.
  • Sali AD, Karakasiliotis I, Evangelidou M, et al. Immunological evidence and regulatory potential for cell-penetrating antibodies in intravenous immunoglobulin. Clinical Transl Immunol. 2015;4:e42. Epub 2015 Oct 2. doi:10.1038/cti.2015.18.
  • Schwab I, Mihai S, Seeling M, et al. Broad requirement for terminal sialic acid residues and FcgammaRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2014;44(5):1444–1453.
  • Zou T, Caton AJ, Koretzky GA, et al. Dendritic cells induce regulatory T cell proliferation through antigen-dependent and -independent interactions. J Immunol. 2010;185(5):2790–2799.
  • Bayry J, Mouthon L, Kaveri SV. Intravenous immunoglobulin expands regulatory T cells in autoimmune rheumatic disease. J Rheumatol. 2012;39:450–451.
  • Massoud AH, Yona M, Xue D, et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol. 2014;133:853–863.
  • Trinath J, Hegde P, Sharma M, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2- dependent prostaglandin E2 in human dendritic cells. Blood. 2013;122:1419–1427.
  • Massoud AH, Guay J, Shalaby KH, et al. Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin Immunol. 2012;129(6):1656–1665.
  • Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9(3):239–244.
  • Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental auto-immune encephalomyelitis. Blood. 2008;111(2):715–722.
  • Tha-In T, Metselaar HJ, Bushell AR, et al. Intravenous immunoglobulins promote skin allograft acceptance by triggering functional activation of CD4+Foxp3+ T cells. Transplantation. 2010;89(12):1446–1455.
  • Cousens LP, Najafian N, Mingozzi F, et al. In vitro and in vivo studies of IgG-derived Treg epitopes (Tregitopes): a promising new tool for tolerance induction and treatment of autoimmunity. J Clin Immunol. 2013;33(Suppl 1):43–49.
  • Maddur MS, Trinath J, Rabin M, et al. Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with increased prostaglandin E2 levels in the circulation. Cell Mol Immunol. 2015;12:650–652.
  • Ballow M. Mechanisms of immune regulation by IVIG. Curr Opin Allergy Clin Immunol. 2014;14:509–515.
  • Vani J, Elluru S, Negi VS, et al. Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmunity Rev. 2008;7:440–444.
  • Ramakrishna C, Newo AN, Shen YW, et al. Passively administered pooled human immunoglobulins exert IL-10 dependent anti-inflammatory effects that protect against fatal HSV encephalitis. PLoS Pathog. 2011;7:e1002071. Epub 2011 Jun 2. doi:10.1371/journal.ppat.1002071.
  • Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513–533.
  • Altznauer F, von Gunten S, Spath P, et al. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol. 2003;112(6):1185–1190.
  • Siberil S, Elluru SR, Negi VS, et al. Intravenous immunglobulin in autoimmune and inflammatory diseases more than mere transfer antibodies. Transf Apher Science. 2007;37:103–107.
  • Stiehm RE. Adverse effects of human immunglobulin therapy. Transf Med Rev. 2013;27:171–178.
  • Bonilla FA. Intravenous immunoglobulin: adverse reactions and management. J Allergy Clin Immunol. 2008;122:1238–1239.
  • Donofrio PD, Bril V, Dalakas MC, et al. Safety and tolerability of immune globulin intravenous in chronic inflammatory demyelinating polyradiculoneuropathy. Arch Neurol. 2010;67:1082–1088.
  • Dantal J. Intravenous immunoglobulins: in-depth review of excipients and acute kidney injury risk. Am J Nephrol. 2013;38:275–284.
  • Martin TD. Safety and tolerability of intravenous immunoglobulins. In: Saud G, editor. Treatment of neurological disorders with intravenous immunoglobulins. London: Martin Dunitz; 2000. p. 181–191.
  • Eftimov F, Winer JB, Vermeulen M, et al. Intravenous immunglobulin for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev. 2013. Epub 2013 Dec 30. doi:10.1002/14651858.CD001797.pub3.
  • Daniel GW, Menis M, Sridhar G, et al. Immune globulins and thrombotic adverse events as recorded in a large administrative database in 2008 through 2010. Transfusion. 2012;52:2113–2121.
  • Mizrahi M. The hypercoagulability of intravenous immunoglobulin. Clin Adv Hematol Oncol. 2011;9:49–50.
  • Caress JB, Houston-Webb L, Passmore LV, et al. Case-control study of thromboembolic events associated with IV immunoglobulin. J Neurol. 2009;256:339–342.
  • Al-Riyami AZ, Lee J, Connolly M, et al. Cerebral sinus thrombosis following IV immunoglobulin therapy of immune thrombocytopenic purpura. Pediatr Blood Cancer. 2011;57:157–159.
  • Huang L, Kanellis J, Mulley W. Slow and steady. Reducing thrombotic events in renal transplant recipients treated with IVIg for antibody-mediated rejection. Nephrology. 2011;16:239–242.
  • Rachid R, Bonilla FA. The role of anti-IgA antibodies in causing adverse reactions to gamma globulin infusion in immunodeficient patients: a comprehensive review of the literature. J Allergy Clin Immunol. 2012;129:628–634.
  • Morgan S, Sorensen P, Vercellotti G, et al. Haemolysis after treatment with intravenous immunoglobulin due to anti-A. Transfus Med. 2011;21:267–270.
  • Nguyen TP, Biliciler S, Wahed A, et al. Occurrence of hemolytic anemia in patients with GBS treated with high-dose IVIg. Neurol Neuroimmunol Neuroinflamm. Epub 2014 Dec 11. doi:10.1212/NXI.0000000000000050.
  • Welles CC, Tambra S, Lafayette RA. Hemoglobinuria and acute kidney injury requiring hemodialysis following intravenous immunoglobulin infusion. Am J Kidney Dis. 2010;55:148–151.
  • Baxley A, Akhatari M. Hematologic toxicities associated with intravenous immunglobulin therapy. Int Immunopharmacol. 2011;11:1663–1667.
  • Lewis M, Maddison P. Intravenous immunoglobulin causing reversible posterior leukoencephalopathy syndrome? J Neurol Neurosurg Psychiatry. 2000;69:704.
  • Doss-Esper CE, Singhal AB, Smith MS, et al. Reversible posterior leukoencephalopathy, cerebral vasoconstriction, and strokes after intravenous immune globulin therapy in guillain-barre syndrome. J Neuroimaging. 2005;15(2):188–192.
  • Belmouaz S, Desport E, Leroy F, et al. Posterior reversible encephalopathy induced by intravenous immunoglobulin. Nephrol Dial Transplant. 2008;23(1):417–419.
  • Stetefeld HR, Lehmann HC, Fink GR, et al. Posterior reversible encephalopathy syndrome and stroke after intravenous immunoglobulin treatment in Miller-Fisher syndrome/Bickerstaff brain stem encephalitis overlap syndrome. J Stroke Cerebrovasc Dis. Epub 2014 Aug 20. doi:10.1016/j.jstrokecerebrovasdis.
  • Erdman DD, Anderson BC, Torok TJ, et al. A possible transmission of parvovirus B19 from intravenous immune globulin. J Med Virol. 1997;53:233–236.
  • Sejvar JJ, Baughman AL, Wise M, et al. Population incidence of Guillain-Barre syndrome: a systematic review and metaanalysis. Neuroepidemiol. 2011;36:123–133.
  • van den Berg B, Walgaard C, Drenthen J, et al. Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nature Rev. 2014;10:469–482.
  • Mathey EK, Park SB, Hughes RAC, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry. 2015;86:973–985.
  • Yuki N, Hartung HP. Guillain-Barre syndrome. N Engl J Med. 2012;366:2294–2304.
  • Arcila-Londono X, Lewis RA. Guillain-Barre syndrome. Semin Neurol. 2012;32:179–186.
  • Yuki N. Guillain-Barre syndrome and anti-ganglioside antibodies: a clinician-scientist’s journey. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:299–326.
  • Caudie C, Quittard Pinon A, Taravel D, et al. Preceding infections and anti-ganglioside antibody profiles assessed by a dot immunoassay in 306 French Guillain-Barre syndrome patients. J Neurol. 2011;258:1958–1964.
  • Sekiguchi Y, Uncini A, Yuki N, et al. Antiganglioside antibodies are associated with axonal Guillain-Barre syndrome: a Japanese-Italian collaborative study. J Neurol Neurosurg Psychiatry. 2012;83:23–28.
  • Ito M, Matsuno K, Sakumoto Y, et al. Ataxic Guillain-Barre syndrome and acute sensory ataxic neuropathy form a continuous spectrum. J Neurol Neurosurg Psychiatry. 2011;82:294–299.
  • Devaux JJ. Antibodies to gliomedin cause peripheral demyelinating neuropathy and the dismantling of the nodes of Ranvier. Am J Pathol. 2012;181:1402–1413.
  • Ng JK, Malotka J, Kawakami N, et al. Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology. 2012;79(23):2241–2248.
  • Prüss H, Schwab JM, Derst C, et al. Neurofascin as target of autoantibodies in Guillain-Barre syndrome. Brain. 2011;134:e173–e173. Epub 2011 Jan 27. doi:10.1093/brain/awq372.
  • Devaux JJ, Odaka M, Yuki N. Nodal proteins are target antigens in Guillain-Barre syndrome. J Peripher Nerv Syst. 2012;17:62–71.
  • Chi L, Wang H, Zhang Y, et al. Abnormality of circulating CD4+CD25+ regulatory T cell in patients with Guillain-Barrė syndrome. J Neuroimmun. 2007;192:206–214.
  • Maddur MS, Rabin M, Hegde P, et al. Intravenous immunoglobulin exerts reciprocal regulation of Th1/Th17 cells and regulatory T cells in Guillain-Barrė syndrome patients. Immunol Res. 2014;60:320–329.
  • Li S, Jin T, Zhang HL, et al. Circulating Th17, Th22, and Th1 cells are elevated in the Guillain-Barrė syndrome and downregulated by IVIg treatments. Mediators Inflamm. 2014. Epub 2014 May 12. doi:10.1155/2014/740947.
  • Lehmann HC, Hartung HP. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J Neuroimmunol. 2011;231:61–69.
  • Mausberg AK, Dorok M, Stettner M, et al. Recovery of the T-cell repertoire in CIDP by IV immunoglobulins. Neurology. 2013;80(3):296–303.
  • Bril V, Ilse WK, Pearce R, et al. Pilot trial of immunoglobulin versus plasma exchange in patients with Guillain-Barré syndrome. Neurology. 1996;46(1):100–103.
  • Diener HC, Haupt WF, Kloss TM, et al. A preliminary, randomized, multicenter study comparing intravenous immunoglobulin, plasma exchange, and immune absorption in Guillain-Barré syndrome. Eur Neurol. 2001;46(2):107–109.
  • El-Bayoumi MA, El-Refaey AM, Abdelkader AM, et al. Comparison of intravenous immunoglobulin and plasma exchange in treatment of mechanically ventilated children with Guillain Barré syndrome: a randomized study. Crit Care. 2011;15(4):R164.
  • Gürses N, Uysal S, Çetinkaya F, et al. Intravenous immunoglobulin treatment in children with Guillain-Barré syndrome. Scand J Infect Dis. 1995;27(3):241–243.
  • Korinthenberg R, Schessl J, Kirschner J, et al. Intravenously administered immunoglobulin in the treatment of childhood Guillain-Barré syndrome: a randomized trial. Pediatrics. 2005;116(1):8–14.
  • Nomura K, Hamaguchi K, Hosokawa T, et al. A randomized controlled trial comparing intravenous immunoglobulin and plasmapheresis in Guillain-Barré syndrome. Neurological Ther. 2001;18(1):69–81.
  • PSGBS Study Group. Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barré syndrome. Lancet. 1997;349(9047):225–230.
  • van der Meché FGA, Schmitz PIM. Dutch Guillain-Barré study group. A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barré syndrome. New England J Medicine. 1992;326(17):1123–1129.
  • Wang R, Feng A, Sun W, et al. Intravenous immunoglobulin therapy in children with Guillain-Barré syndrome. J Appl Clin Pediatrics. 2001;16(4):223–224.
  • Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2014;9:CD002063. Epub 2014 Sep 19. doi:10.1002/14651858.
  • Mahdi-Rogers M, Hughes RA. Epidemiology of chronic inflammatory neuropathies in southeast England. Eur J Neurol. 2014;21:28–33.
  • Van den Bergh PY, Hadden RD, Bouche P, et al. EFNS/PNS guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the EFNS and the PNS—first revision. Eur J Neurol 2010;17:356–363.
  • Viala K, Diagnosis of atypical forms of chronic inflammatory demyelinating polyradiculoneuropathy: a practical overview based on seom case studies. Internat J Neurosci. 2015. Epub 2015 Oct 16. doi:10.3109/00207454.2015.1096786.
  • Schneider-Hohendorf T, Schwab N, Uceyler N, et al. CD8+ T-cell immunity in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology. 2012;78:402–408.
  • Chi LJ, Wang HB, Wang WZ. Impairment of circulating CD4+CD25+ regulatory T cells in patients with chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst. 2008;13:54–63.
  • Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2013;73:370–380.
  • Cifuentes-Diaz C, Dubourg O, Irinopoulou T, et al. Nodes of Ranvier and paranodes in chronic acquired neuropathies. PLoS One. 2011. Epub 2011 Jan 18. doi:10.1371/journal.pone.0014533.
  • Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg. Neurology. 2014;82:879–886.
  • Miura Y, Devaux JJ, Fukami Y, et al. Contactin 1 IgG4 associated to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain. 2015;138:1484–1491. Epub 2015 Mar 25. doi:10.1093/brain/awv054.
  • Tackenberg B, Jelcic I, Baerenwaldt A, et al. Impaired inhibitory Fcγ receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. PNAS. 2009;106:4788–4792.
  • Bick S, Tschernatsch M, Karg A, et al. Intravenous immunoglobulin inhibits BAFF production in chronic inflammatory demyelinating polyneuropathy - a new mechanism of action. J Neuroimmunol. 2013;256:84–90.
  • Ritter C, Förster D, Albrecht P, et al. IVIG regulates BAFF expression in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). J Neuroimmunol. 2014;274:225–229.
  • Hughes RAC, Mehndiratta MM, Corticosteroids for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev. 2012. Epub 2012 Sep 19. doi:10.1002/14651858.CD002062.pub2.
  • Mehendiratta MM, Hughes RAC, Agarwal P. Plasma exchange for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev. 2004. doi:10.1002/14651858.CD003906.pub2.
  • Hughes RAC, Bensa S, Willison HJ, et al. Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol. 2001;50:195–201.
  • Dyck PJ, Litchy WJ, Kratz KM, et al. A plasma exchange versus immune globulin infusion trial in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol. 1994;36:838–845.
  • Vermeulen M, van Doorn PA, Brand A, et al. Intravenous immunoglobulin treatment in patients with chronic inflammatory demyelinating polyneuropathy: a double blind, placebo controlled study. J Neurol Neurosurg Psychiatry. 1993;56:36–39.
  • Mendell JR, Barohn RJ, Freimer ML, et al. Randomized controlled trial of IVIg in untreated chronic inflammatory demyelinating polyradiculoneuropathy. Neurology. 2001;56:445–449.
  • Hahn AF, Bolton CF, Zochodne D, et al. Intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy. A double-blind, placebo-controlled, cross-over study. Brain. 1996;119:1067–1077.
  • van Doorn PA, Brand A, Strengers PF, et al. High-dose intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy: a double-blind, placebo-controlled, crossover study. Neurology. 1990;40:209–212.
  • Eftimov F, Winer JB, Vermeulen M, et al. Intravenous immunoglobulin for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev. 2009. Epub 2009 Jan 21. doi:10.1002/14651858.CD001797.pub2.
  • Hughes RAC, Donofrio P, Bril V, et al. Intravenous immune globulin (10% caprylate chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol. 2008;7:136–144.
  • Leger JM, De Bleecker JL, Sommer C, et al. Efficacy and safety of Privigen in patients with chronic inflammatory demyelinating polyneuropathy: results of a prospective, single-arm, open-label Phase III study (the PRIMA study). J Periph Nervous Syst. 2013;18:130–140.
  • Cocito D, Paolasso I, Antonini G, et al. A nationwide retrospective analysis on the effect of immune therapies in patients with chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol. 2010;17:289–294.
  • Nobile-Orazio E, Cocito D, Jann S, et al. Intravenous immunoglobulin versus intravenous methylprednisolone for chronic inflammatory demyelinating polyradiculoneuropathy: a randomised controlled trial. Lancet Neurol. 2012;11:493–502.
  • Vlam L, van der Pol WL, Cats EA, et al. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol. 2012;8:48–58.
  • Cats EA, Jacobs BC, Yuki N, et al. Multifocal motor neuropathy: association of anti-GM1 IgM antibodies with clinical features. Neurology. 2010;75:1961–1967.
  • Galban-Horcajo F, Fitzpatrick AM, Hutton AJ, et al. Antibodies to heteromeric glycolipid complexes in multifocal motor neuropathy. Eur J Neurol. 2013;20:62–70.
  • Notturno F, Di FT, Yuki N, et al. Autoantibodies to neurofascin-186 and gliomedin in multifocal motor neuropathy. J Neuroimmunol. 2014;276:207–212.
  • Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society—first revision. J Peripher Nerv Syst. 2010;15:295–301.
  • Cats EA, van der Pol WL, Piepers S, et al. Correlates of outcome and response to IVIg in 88 patients with multifocal motor neuropathy. Neurology. 2010;75:818–825.
  • Piepers S, Jansen MD, Cats EA, et al. IVIg inhibits classical pathway activity and anti-GM1 IgM-mediated complement deposition in MMN. J Neuroimmunol. 2010;229:256–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.