650
Views
9
CrossRef citations to date
0
Altmetric
Review

Old problem, new solutions: biomarker discovery for acetaminophen liver toxicity

, &
Pages 659-669 | Received 29 May 2019, Accepted 08 Jul 2019, Published online: 15 Jul 2019

References

  • Lee WM. Acetaminophen (APAP) hepatotoxicity – Isn’t it time for APAP to go away? J Hepatol. 2017 Dec;67(6):1324–1331.
  • Major JM, Zhou EH, Wong HL, et al. Trends in rates of acetaminophen-related adverse events in the United States. Pharmacoepidemiol Drug Saf. 2016 May;25(5):590–598.
  • Durand D, Taransaud J, Cardona F, et al. Management of medication errors/overdosage with paracetamol (acetaminophen) in France. ANSM – Agence nationale de décurité du médicament et des produits de santé. 2016; poster.
  • WHO, editor. WHO model prescribing information: drugs used in anesthesia. WHO Library Cataloguing in Publication Data 1994.
  • Watkins PB, Kaplowitz N, Slattery JT, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 2006 Jul 05;296(1):87–93.
  • Heard K, Green JL, Anderson V, et al. A randomized, placebo-controlled trial to determine the course of aminotransferase elevation during prolonged acetaminophen administration. BMC Pharmacol Toxicol. 2014 Jul 22;15:39.
  • Dart RC, Bailey E. Does therapeutic use of acetaminophen cause acute liver failure? Pharmacotherapy. 2007 Sep;27(9):1219–1230.
  • Lavonas EJ, Reynolds KM, Dart RC. Therapeutic acetaminophen is not associated with liver injury in children: a systematic review. Pediatrics. 2010 Dec;126(6):e1430–44.
  • Rumack B, Heard K, Green J, et al. Effect of therapeutic doses of acetaminophen (up to 4 g/day) on serum alanine aminotransferase levels in subjects consuming ethanol: systematic review and meta-analysis of randomized controlled trials. Pharmacotherapy. 2012 Sep;32(9):784–791.
  • Online. [Internet]. 2019. Available from: https://www.UpToDate.com
  • Kuffner EK, Dart RC, Bogdan GM, et al. Effect of maximal daily doses of acetaminophen on the liver of alcoholic patients: a randomized, double-blind, placebo-controlled trial. Arch Intern Med. 2001 Oct 8;161(18):2247–2252.
  • Kuffner EK, Green JL, Bogdan GM, et al. The effect of acetaminophen (four grams a day for three consecutive days) on hepatic tests in alcoholic patients – a multicenter randomized study. BMC Med. 2007 May;30(5):13.
  • Forget P, Wittebole X, Laterre PF. Therapeutic dose of acetaminophen may induce fulminant hepatitis in the presence of risk factors: a report of two cases. Br J Anaesth. 2009 Dec;103(6):899–900.
  • Seifert SA, Kovnat D, Anderson VE, et al. Acute hepatotoxicity associated with therapeutic doses of intravenous acetaminophen. Clin Toxicol (Phila). 2016 Mar;54(3):282–285.
  • Krahenbuhl S, Brauchli Y, Kummer O, et al. Acute liver failure in two patients with regular alcohol consumption ingesting paracetamol at therapeutic dosage. Digestion. 2007;75(4):232–237.
  • Ging P, Mikulich O, O’Reilly KM. Unexpected paracetamol (acetaminophen) hepatotoxicity at standard dosage in two older patients: time to rethink 1 g four times daily? Age Ageing. 2016 Jul;45(4):566–567.
  • Kurtovic J, Riordan SM. Paracetamol-induced hepatotoxicity at recommended dosage. J Intern Med. 2003 Feb;253(2):240–243.
  • Mazaleuskaya LL, Sangkuhl K, Thorn CF, et al. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25:416–426.
  • Dart RC, Green JL, Kuffner EK, et al. The effects of paracetamol (acetaminophen) on hepatic tests in patients who chronically abuse alcohol – a randomized study. Aliment Pharmacol Ther. 2010 Aug;32(3):478–486.
  • Heard K, Green JL, Bailey JE, et al. A randomized trial to determine the change in alanine aminotransferase during 10 days of paracetamol (acetaminophen) administration in subjects who consume moderate amounts of alcohol. Aliment Pharmacol Ther. 2007 Jul 15;26(2):283–290.
  • Schmidt LE, Dalhoff K, Poulsen HE. Acute versus chronic alcohol consumption in acetaminophen-induced hepatotoxicity. Hepatology. 2002 Apr;35(4):876–882.
  • Bacle A, Pronier C, Gilardi H, et al. Hepatotoxicity risk factors and acetaminophen dose adjustment, do prescribers give this issue adequate consideration? A French university hospital study. Eur J Clin Pharmacol. 2019 Apr;10:1–9.
  • Prescott LF, Wright N. The effects of hepatic and renal damage on paracetamol metabolism and excretion following overdosage. A pharmacokinetic study. Br J Pharmacol. 1973 Dec;49(4):602–613.
  • Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. 1980 Oct;10(Suppl 2):291S–298S.
  • McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013 Sep;30(9):2174–2187.
  • Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol. 2001 Jan;31(1):55–138.
  • Ghanem CI, Perez MJ, Manautou JE, et al. Acetaminophen from liver to brain: new insights into drug pharmacological action and toxicity. Pharmacol Res. 2016;109:119–131.
  • McGill MR, Sharpe MR, Williams CD, et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012 Apr;122(4):1574–1583.
  • Moles A, Torres S, Baulies A, et al. Mitochondrial-lysosomal axis in acetaminophen hepatotoxicity. Front Pharmacol. 2018;9:453.
  • Laine JE, Auriola S, Pasanen M, et al. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica. 2009 Jan;39(1):11–21.
  • Manyike PT, Kharasch ED, Kalhorn TF, et al. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–282.
  • Vliegenthart AD, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol. 2015 Sep;80(3):351–362.
  • Xie Y, McGill MR, Cook SF, et al. Time course of acetaminophen-protein adducts and acetaminophen metabolites in circulation of overdose patients and in HepaRG cells. Xenobiotica. 2015;45(10):921–929.
  • Brok J, Buckley N, Gluud C. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev. 2006;2:CD003328.
  • Prescott LF, Illingworth RN, Critchley JA, et al. Intravenous N-acetylcystine: the treatment of choice for paracetamol poisoning. Br Med J. 1979 Nov 3;2(6198):1097–1100.
  • Hodgman MJ, Garrard AR. A review of acetaminophen poisoning. Crit Care Clin. 2012 Oct;28(4):499–516.
  • Online. [Internet] 2019. Available from: http://www.Swissmedicinfo.ch
  • Lindena J, Sommerfeld U, Hopfel C, et al. Catalytic enzyme activity concentration in tissues of man, dog, rabbit, guinea pig, rat and mouse. Approach to a quantitative diagnostic enzymology, III. Communication. J Clin Chem Clin Biochem. 1986 Jan;24(1):35–47.
  • Antoine DJ, Dear JW, Lewis PS, et al. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 2013 Aug;58(2):777–787.
  • Dart RC, Rumack BH, editors. Acetaminophen (Paracetamol). 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins; 2004.
  • Rumack BH, Peterson RC, Koch GG, et al. Acetaminophen overdose. 662 cases with evaluation of oral acetylcysteine treatment. Arch Intern Med. 1981 Feb 23;141(3Spec No):380–385.
  • Wong A, Graudins A. Risk prediction of hepatotoxicity in paracetamol poisoning. Clin Toxicol (Phila). 2017 Apr;27:1–14.
  • Siemionow K, Teul J, Dragowski P, et al. New potential biomarkers of acetaminophen-induced hepatotoxicity. Adv Med Sci. 2016 Sep;61(2):325–330.
  • McGill MR, Jaeschke H. Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol. 2014 Jul;10(7):1005–1017.
  • James LP, Letzig L, Simpson PM, et al. Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab Dispos. 2009 Aug;37(8):1779–1784.
  • Davern TJ 2nd, James LP, Hinson JA, et al. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology. 2006 Mar;130(3):687–694.
  • Cook SF, King AD, Chang Y, et al. Quantification of a biomarker of acetaminophen protein adducts in human serum by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: clinical and animal model applications. J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Mar 15;985:131–141.
  • Roberts DW, Lee WM, Hinson JA, et al. An immunoassay to rapidely measure acetaminophen protein adducts accurately identifies patients with acute liver injury or failure. Clin Gastroenterol Hepatol. 2017;15:555–562.
  • Heard KJ, Green JL, James LP, et al. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose. BMC Gastroenterol. 2011 Mar 14;11:20.
  • James LP, Chiew A, Abdel-Rahman SM, et al. Acetaminophen protein adduct formation following low-dose acetaminophen exposure: comparison of immediate-release vs extended-release formulations. Eur J Clin Pharmacol. 2013 Apr;69(4):851–857.
  • Curry SC, Padilla-Jones A, Ruha AM, et al. The relationship between circulating acetaminophen-protein adduct concentrations and alanine aminotransferase activities in patients with and without acetaminophen overdose and toxicity. J Med Toxicol. 2019 Apr 12;15:143–155.
  • Bhattacharyya S, Yan K, Pence L, et al. Targeted liquid chromatography-mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children. Biomark Med. 2014;8(2):147–159.
  • Curtis RM, Sivilotti ML. A descriptive analysis of aspartate and alanine aminotransferase rise and fall following acetaminophen overdose. Clin Toxicol (Phila). 2015 Nov;53(9):849–855.
  • Sivilotti ML, Green TJ, Langmann C, et al. Multiplying the serum aminotransferase by the acetaminophen concentration to predict toxicity following overdose. Clin Toxicol (Phila). 2010 Oct;48(8):793–799.
  • Wong A, Sivilotti ML, Dargan PI, et al. External validation of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity from paracetamol overdose. Clin Toxicol (Phila). 2015;53(8):807–814.
  • Wong A, Sivilotti MLA, Graudins A. Accuracy of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity in modified-release paracetamol overdose. Clin Toxicol (Phila). 2017 Jun;55(5):346–351.
  • McGill MR, Staggs VS, Sharpe MR, et al. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology. 2014 Oct;60(4):1336–1345.
  • Dear JW, Clarke JI, Francis B, et al. Risk stratification after paracetamol overdose using mechanistic biomarkers: results from two prospective cohort studies. Lancet Gastroenterol Hepatol. 2017 Nov 13;3(2):1041–13.
  • McGill MR, Cao M, Svetlov A, et al. Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans. Biomarkers. 2014 May;19(3):222–230.
  • Weerasinghe SV, Jang YJ, Fontana RJ, et al. Carbamoyl phosphate synthetase-1 is a rapid turnover biomarker in mouse and human acute liver injury. Am J Physiol Gastrointest Liver Physiol. 2014 Aug 01;307(3):G355–64.
  • Gujral JS, Knight TR, Farhood A, et al. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002 Jun;67(2):322–328.
  • Antoine DJ, Williams DP, Kipar A, et al. High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo. Toxicol Sci. 2009 Dec;112(2):521–531.
  • Thulin P, Nordahl G, Gry M, et al. Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver Int. 2014 Mar;34(3):367–378.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509–524.
  • Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015 Jun 29;87:3–14.
  • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005 Feb 17;433(7027):769–773.
  • Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008 Sep 04;455(7209):58–63.
  • MiRBase. The microRNA database 2019. Available from: http://wwwmirbaseorg/Online
  • Hsu SD, Chu CH, Tsou AP, et al. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 2008 Jan;36(Database issue):D165–9.
  • Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007 Jun 12;8:166.
  • Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010 Nov;56(11):1733–1741.
  • Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 Sep 01;39(16):7223–7233.
  • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5003–5008.
  • Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012 Nov;56(5):1946–1957.
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513–10518.
  • Petrovic N, Ergun S, Isenovic ER. Levels of MicroRNA heterogeneity in cancer biology. Mol Diagn Ther. 2017 Jun 15;21:511–523.
  • Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology. 2012 Jun;142(7):1431–1443.
  • Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013 Sep;10(9):542–552.
  • Kim YK. Extracellular microRNAs as biomarkers in human disease. Chonnam Med J. 2015 Aug;51(2):51–57.
  • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401–1414.
  • Wang W, Shi Q, Mattes WB, et al. Translating extracellular microRNA into clinical biomarkers for drug-induced toxicity: from high-throughput profiling to validation. Biomark Med. 2015;9(11):1177–1188.
  • MSKCC. Database of the memorial sloan kettering cancer center (MSKCC) comuptational biology center Available from: http://wwwmicroRNAorg.
  • Dubin PH, Yuan H, Devine RK, et al. Micro-RNA-122 levels in acute liver failure and chronic hepatitis C. J Med Virol. 2014 Sep;86(9):1507–1514.
  • Ward J, Kanchagar C, Veksler-Lublinsky I, et al. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12169–12174.
  • Vliegenthart AD, Shaffer JM, Clarke JI, et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci Rep. 2015 Oct 22;5:15501.
  • Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009 Nov;55(11):1977–1983.
  • Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4402–4407.
  • Baker LA, Lee KC, Palacios Jimenez C, et al. Circulating microRNAs reveal time course of organ injury in a porcine model of acetaminophen-induced acute liver failure. PLoS One. 2015;10(5):e0128076.
  • Starkey Lewis PJ, Dear J, Platt V, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology. 2011 Nov;54(5):1767–1776.
  • Vliegenthart ADB, Berends C, Potter CMJ, et al. MicroRNA-122 can be measured in capillary blood which facilitates point-of-care testing for drug-induced liver injury. Br J Clin Pharmacol. 2017 Sep;83(9):2027–2033.
  • Yang X, Salminen WF, Shi Q, et al. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol Appl Pharmacol. 2015 Apr 15;284(2):180–187.
  • Roderburg C, Luedde T. Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol. 2014 Dec;61(6):1434–1437.
  • Krauskopf J, Caiment F, Claessen SM, et al. Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury. Toxicol Sci. 2015 Feb;143(2):268–276.
  • Krauskopf J, de Kok TM, Schomaker SJ, et al. Serum microRNA signatures as “liquid biopsies” for interrogating hepatotoxic mechanisms and liver pathogenesis in human. PLoS One. 2017;12(5):e0177928.
  • Yu D, Wu L, Gill P, et al. Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2017 Oct 24;92(2):845–858.
  • Chowdhary V, Teng KY, Thakral S, et al. miRNA-122 protects mice and human hepatocytes from acetaminophen toxicity by regulating cytochrome P450 family 1 subfamily a member 2 and family 2 subfamily E member 1 expression. Am J Pathol. 2017 Dec;187(12):2758–2774.
  • Liu HN, Wu H, Chen YJ, et al. Serum microRNA signatures and metabolomics have high diagnostic value in hepatocellular carcinoma. Oncotarget. 2017 Dec 12;8(65):108810–108824.
  • Jetten MJ, Gaj S, Ruiz-Aracama A, et al. ‘Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):320–328.
  • Safaei A, Arefi Oskouie A, Mohebbi SR, et al. Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis diseases. Gastroenterol Hepatol Bed Bench. 2016 Summer;9(3):158–173.
  • Araujo AM, Carvalho M, Carvalho F, et al. Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI). Crit Rev Toxicol. 2017 Sep;47(8):633–649.
  • Yu M, Zhu Y, Cong Q, et al. Metabonomics research progress on liver diseases. Can J Gastroenterol Hepatol. 2017;2017:8467192.
  • Suciu AM, Crisan DA, Procopet BD, et al. What’s in metabolomics for alcoholic liver disease? J Gastrointestin Liver Dis. 2018 Mar;27(1):51–58.
  • Mayo R, Crespo J, Martinez-Arranz I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatol Commun. 2018 Jul;2(7):807–820.
  • Cuykx M, Rodrigues RM, Laukens K, et al. In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol. 2018 Oct;92(10):3007–3029.
  • Liu Z, Zhang Z, Huang M, et al. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol. 2018 Jul 11;18(1):112.
  • Schnackenberg LK, Sun J, Bhattacharyya S, et al. Metabolomics analysis of urine samples from children after acetaminophen overdose. Metabolites. 2017 Sep 6;7(3):46.
  • Bhattacharyya S, Pence L, Yan K, et al. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose. Toxicol Rep. 2016;3:747–755.
  • Winnike JH, Li Z, Wright FA, et al. Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin Pharmacol Ther. 2010 Jul;88(1):45–51.
  • Kim JW, Ryu SH, Kim S, et al. Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal Chem. 2013 Dec 3;85(23):11326–11334.
  • Cohen IV, Cirulli ET, Mitchell MW, et al. Acetaminophen (Paracetamol) use modifies the sulfation of sex hormones. EBioMedicine. 2018;28:316–323.
  • Chen C, Krausz KW, Shah YM, et al. Serum metabolomics reveals irreversible inhibition of fatty acid beta-oxidation through the suppression of PPARalpha activation as a contributing mechanism of acetaminophen-induced hepatotoxicity. Chem Res Toxicol. 2009 Apr;22(4):699–707.
  • Chan JCY, Soh ACK, Kioh DYQ, et al. Reactive metabolite-induced protein glutathionylation: a potentially novel mechanism underlying acetaminophen hepatotoxicity. Mol Cell Proteomics. 2018 Oct;17(10):2034–2050.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013 Feb 18;200(4):373–383.
  • Piper RC, Katzmann DJ. Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol. 2007;23:519–547.
  • Jaiswal R, Luk F, Gong J, et al. Microparticle conferred microRNA profiles – implications in the transfer and dominance of cancer traits. Mol Cancer. 2012 Jun 08;11:37.
  • Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–659.
  • Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017 Jun 21;14:455–466.
  • Soung YH, Ford S, Zhang V, et al. Exosomes in cancer diagnostics. Cancers (Basel). 2017 Jan 12;9(1):8.
  • Burger D, Schock S, Thompson CS, et al. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013 Apr;124(7):423–441.
  • Sato K, Meng F, Glaser S, et al. Exosomes in liver pathology. J Hepatol. 2016 Jul;65(1):213–221.
  • Deng F, Magee N, Zhang Y. Decoding the role of extracellular vesicles in liver diseases. Liver Res. 2017 Sep;1(3):147–155.
  • Eguchi A, Feldstein AE. Extracellular vesicles in non-alcoholic and alcoholic fatty liver diseases. Liver Res. 2018 Mar;2(1):30–34.
  • Duan L, Ramachandran A, Akakpo JY, et al. Role of extracellular vesicles in release of protein adducts after acetaminophen-induced liver injury in mice and humans. Toxicol Lett. 2019;301:125–132.
  • Cho YE, Seo W, Kim DK, et al. Exogenous exosomes from mice with acetaminophen-induced liver injury promote toxicity in the recipient hepatocytes and mice. Sci Rep. 2018 Oct 30;8(1):16070.
  • Rahman MA, Kodidela S, Sinha N, et al. Plasma exosomes exacerbate alcohol- and acetaminophen-induced toxicity via CYP2E1 pathway. Sci Rep. 2019 Apr 25;9(1):6571.
  • EMA. European medicines agency. 2016. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2016/09/WC500213479.pdf
  • FDA. US food and drug administration. Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ucm434382.htm. 2016.
  • Bhushan B, Chavan H, Borude P, et al. Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice. Toxicol Sci. 2017 Feb;155(2):363–378.
  • Bhushan B, Poudel S, Manley MW Jr., et al. Inhibition of glycogen synthase kinase 3 accelerated liver regeneration after acetaminophen-induced hepatotoxicity in mice. Am J Pathol. 2017 Mar;187(3):543–552.
  • Bhushan B, Walesky C, Manley M, et al. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am J Pathol. 2014 Nov;184(11):3013–3025.
  • Dadhania VP, Bhushan B, Apte U, et al. Wnt/beta-Catenin signaling drives thioacetamide-mediated heteroprotection against acetaminophen-induced lethal liver injury. Dose Response. 2017 Jan-Mar;15(1):1559325817690287.
  • Jaeschke H. Mechanisms of sterile inflammation in acetaminophen hepatotoxicity. Cell Mol Immunol. 2018 Jan;15(1):74–75.
  • Bonkovsky HL, Barnhart HX, Foureau DM, et al. Cytokine profiles in acute liver injury-results from the US drug-induced liver injury network (DILIN) and the acute liver failure study group. PLoS One. 2018;13(10):e0206389.
  • Yu D, Wu L, Gill P, et al. Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845–858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.