333
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects

ORCID Icon, & ORCID Icon
Pages 1369-1406 | Received 31 Aug 2021, Accepted 07 Jan 2022, Published online: 24 Jan 2022

References

  • Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.
  • Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–1389.
  • van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int. 2015;28(5):508–515.
  • Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547–558.
  • Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;Suppl 14(3_suppl):s2–8.
  • Shaw LM, Figurski M, Milone MC, et al. Therapeutic drug monitoring of mycophenolic acid. Clin J Am Soc Nephrol. 2007;2(5):1062–1072.
  • Kiang TKL, Ensom MHH. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients. Clin Pharmacokinet. 2019;58(12):1533–1552.
  • Abd Rahman AN, Tett SE, Abdul Gafor HA, et al. Development of improved dosing regimens for mycophenolate mofetil based on population pharmacokinetic analyses in adults with lupus nephritis. Eur J Drug Metab Pharmacokinet. 2017;42(6):993–1004.
  • Barau C, Furlan V, Debray D, et al. Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol. 2012;74(3):515–524.
  • Colom H, Lloberas N, Andreu F, et al. Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in renal transplant recipients. Kidney Int. 2014;85(6):1434–1443.
  • Cremers S, Schoemaker R, Scholten E, et al. Characterizing the role of enterohepatic recycling in the interactions between mycophenolate mofetil and calcineurin inhibitors in renal transplant patients by pharmacokinetic modelling. Br J Clin Pharmacol. 2005;60(3):249–256.
  • de Winter BC, Mathot RA, Sombogaard F, et al. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol. 2011;6(3):656–663.
  • de Winter BC, Neumann I, van Hest RM, et al. Limited sampling strategies for therapeutic drug monitoring of mycophenolate mofetil therapy in patients with autoimmune disease. Ther Drug Monit. 2009;31(3):382–390.
  • de Winter BC, van Gelder T, Glander P, et al. Population pharmacokinetics of mycophenolic acid: a comparison between enteric-coated mycophenolate sodium and mycophenolate mofetil in renal transplant recipients. Clin Pharmacokinet. 2008;47(12):827–838.
  • de Winter BC, van Gelder T, Sombogaard F, et al. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541–564.
  • Dong M, Fukuda T, Cox S, et al. Population pharmacokinetic-pharmacodynamic modelling of mycophenolic acid in paediatric renal transplant recipients in the early post-transplant period. Br J Clin Pharmacol. 2014;78(5):1102–1112.
  • Frymoyer A, Verotta D, Jacobson P, et al. Population pharmacokinetics of unbound mycophenolic acid in adult allogeneic haematopoietic cell transplantation: effect of pharmacogenetic factors. Br J Clin Pharmacol. 2013;75(2):463–475.
  • Guillet BA, Simon NS, Purgus R, et al. Population pharmacokinetics analysis of mycophenolic acid in adult kidney transplant patients with chronic graft dysfunction. Ther Drug Monit. 2010;32(4):427–432.
  • Han N, Yun HY, Kim IW, et al. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients. Eur J Clin Pharmacol. 2014;70(10):1211–1219.
  • Hulin A, Blanchet B, Audard V, et al. Comparison of 3 estimation methods of mycophenolic acid AUC based on a limited sampling strategy in renal transplant patients. Ther Drug Monit. 2009;31(2):224–232.
  • Jiao Z, Ding JJ, Shen J, et al. Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9. Br J Clin Pharmacol. 2008;65(6):893–907.
  • Kim H, Long-Boyle J, Rydholm N, et al. Population pharmacokinetics of unbound mycophenolic acid in pediatric and young adult patients undergoing allogeneic hematopoietic cell transplantation. J Clin Pharmacol. 2012;52(11):1665–1675.
  • Lamba M, Tafti B, Melcher M, et al. Population pharmacokinetic analysis of mycophenolic acid coadministered with either tasocitinib (CP-690,550) or tacrolimus in adult renal allograft recipients. Ther Drug Monit. 2010;32(6):778–781.
  • Langers P, Press RR, Inderson A, et al. Limited sampling model for advanced mycophenolic acid therapeutic drug monitoring after liver transplantation. Ther Drug Monit. 2014;36(2):141–147.
  • Le Guellec C, Bourgoin H, Buchler M, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet. 2004;43(4):253–266.
  • Li H, Mager DE, Bemer MJ, et al. A limited sampling schedule to estimate mycophenolic acid area under the concentration-time curve in hematopoietic cell transplantation recipients. J Clin Pharmacol. 2012;52(11):1654–1664.
  • Li H, Mager DE, Sandmaier BM, et al. Population pharmacokinetics and dose optimization of mycophenolic acid in HCT recipients receiving oral mycophenolate mofetil. J Clin Pharmacol. 2013;53(4):393–402.
  • Li H, Mager DE, Sandmaier BM, et al. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil. Biol Blood Marrow Transplant. 2014;20(8):1121–1129.
  • Ling J, Shi J, Jiang Q, et al. Population pharmacokinetics of mycophenolic acid and its main glucuronide metabolite: a comparison between healthy Chinese and Caucasian subjects receiving mycophenolate mofetil. Eur J Clin Pharmacol. 2015;71(1):95–106.
  • Musuamba FT, Mourad M, Haufroid V, et al. Statistical tools for dose individualization of mycophenolic acid and tacrolimus co-administered during the first month after renal transplantation. Br J Clin Pharmacol. 2013;75(5):1277–1288.
  • Musuamba FT, Mourad M, Haufroid V, et al. A simultaneous D-optimal designed study for population pharmacokinetic analyses of mycophenolic acid and tacrolimus early after renal transplantation. J Clin Pharmacol. 2012;52(12):1833–1843.
  • Musuamba FT, Rousseau A, Bosmans JL, et al. Limited sampling models and Bayesian estimation for mycophenolic acid area under the curve prediction in stable renal transplant patients co-medicated with ciclosporin or sirolimus. Clin Pharmacokinet. 2009;48(11):745–758.
  • Payen S, Zhang D, Maisin A, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients. Ther Drug Monit. 2005;27(3):378–388.
  • Premaud A, Debord J, Rousseau A, et al. A double absorption-phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet. 2005;44(8):837–847.
  • Premaud A, Weber LT, Tonshoff B, et al. Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches. Pharmacol Res. 2011;63(3):216–224.
  • Punyawudho B, Lertdumrongluk P, Kittanamongkolchai P, et al. Population pharmacokinetics of mycophenolate mofetil in Thai lupus nephritis patients. Int J Clin Pharmacol Ther. 2012;50(4):272–280.
  • Saint-Marcoux F, Guigonis V, Decramer S, et al. Development of a Bayesian estimator for the therapeutic drug monitoring of mycophenolate mofetil in children with idiopathic nephrotic syndrome. Pharmacol Res. 2011;63(5):423–431.
  • Saint-Marcoux F, Royer B, Debord J, et al. Pharmacokinetic modelling and development of Bayesian estimators for therapeutic drug monitoring of mycophenolate mofetil in reduced-intensity haematopoietic stem cell transplantation. Clin Pharmacokinet. 2009;48(10):667–675.
  • Sam W-J, Akhlaghi F, Rosenbaum SE. Population pharmacokinetics of mycophenolic acid and its 2 glucuronidated metabolites in kidney transplant recipients. J Clin Pharmacol. 2009;49(2):185–195.
  • Sam W-J, Joy MS. Population pharmacokinetics of mycophenolic acid and metabolites in patients with glomerulonephritis. Ther Drug Monit. 2010;32(5):594–605.
  • Sherwin CMT, Sagcal-Gironella ACP, Fukuda T, et al. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Br J Clin Pharmacol. 2012;73(5):727–740.
  • Shum B, Duffull SB, Taylor PJ, et al. Population pharmacokinetic analysis of mycophenolic acid in renal transplant recipients following oral administration of mycophenolate mofetil. Br J Clin Pharmacol. 2003;56(2):188–197.
  • Staatz CE, Duffull SB, Kiberd B, et al. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61(7):507–516.
  • van Hest RM, Mathot RAA, Pescovitz MD, et al. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–880.
  • van Hest RM, van Gelder T, Bouw R, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–752.
  • van Hest RM, van Gelder T, Vulto AG, et al. Population pharmacokinetics of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet. 2005;44(10):1083–1096.
  • van Hest RM, van Gelder T, Vulto AG, et al. Pharmacokinetic modelling of the plasma protein binding of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet. 2009;48(7):463–476.
  • Velickovic-Radovanovic RM, Jankovic SM, Milovanovic JR, et al. Variability of mycophenolic acid elimination in the renal transplant recipients – population pharmacokinetic approach. Ren Fail. 2015;37(4):652–658.
  • Wang -X-X, Feng MR, Nguyen H, et al. Population pharmacokinetics of mycophenolic acid in lung transplant recipients with and without cystic fibrosis. Eur J Clin Pharmacol. 2015;71(6):673–679.
  • Wang -X-X, Liu W, Zheng T, et al. Population pharmacokinetics of mycophenolic acid and its glucuronide metabolite in lung transplant recipients with and without cystic fibrosis. Xenobiotica. 2017;47(8):697–704.
  • Woillard J-B, Bader-Meunier B, Salomon R, et al. Pharmacokinetics of mycophenolate mofetil in children with lupus and clinical findings in favour of therapeutic drug monitoring. Br J Clin Pharmacol. 2014;78(4):867–876.
  • Zahr N, Amoura Z, Debord J, et al. Pharmacokinetic study of mycophenolate mofetil in patients with systemic lupus erythematosus and design of Bayesian estimator using limited sampling strategies. Clin Pharmacokinet. 2008;47(4):277–284.
  • Zhao W, Elie V, Baudouin V, et al. Population pharmacokinetics and Bayesian estimator of mycophenolic acid in children with idiopathic nephrotic syndrome. Br J Clin Pharmacol. 2010;69(4):358–366.
  • Zhao W, Fakhoury M, Deschenes G, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50(11):1280–1291.
  • Abd Rahman AN, Tett SE, Staatz CE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in patients with autoimmune disease. Clin Pharmacokinet. 2013;52(5):303–331.
  • Dong M, Fukuda T, Vinks AA. Optimization of mycophenolic acid therapy using clinical pharmacometrics. Drug Metab Pharmacokinet. 2014;29(1):4–11.
  • Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol. 2021;87(4):1730–1757.
  • Sherwin CMT, Fukuda T, Brunner HI, et al., The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 50(1): 1–24. 2011.
  • Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–772.
  • Zhang D, Chow DS-L. Clinical pharmacokinetics of mycophenolic acid in hematopoietic stem cell transplantation recipients. Eur J Drug Metab Pharmacokinet. 2017;42(2):183–189.
  • Zwart TC, Guchelaar H-J, van der Boog PJM, et al. Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation. Drug Discov Today. 2021;26(11):2527–2546.
  • Wang G, Ye Q, Huang Y, et al. Population pharmacokinetics of mycophenolic acid in pediatric patients with juvenile dermatomyositis and optimization of limited sampling strategy. Xenobiotica. 2021;51(2):167–176.
  • Chen B, Shao K, An H-M, et al. Population Pharmacokinetics and Bayesian Estimation of Mycophenolic Acid Exposure in Chinese Renal Allograft Recipients After Administration of EC-MPS. J Clin Pharmacol. 2019;59(4):578–589.
  • Colom H, Andreu F, van Gelder T, et al. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: a population-based approach. Clin Pharmacokinet. 2018;57(7):877–893.
  • Kim JH, Han N, Kim MG, et al., Model based development of tacrolimus dosing algorithm considering CYP3A5 genotypes and mycophenolate mofetil drug interaction in stable kidney transplant recipients. Sci Rep. 9(1): 11740. 2019.
  • Kim JH, Han N, Kim MG, et al. Increased exposure of tacrolimus by co-administered mycophenolate mofetil: population pharmacokinetic analysis in healthy volunteers. Sci Rep. 2018;8(1):1687.
  • Labriffe M, Vaidie J, Monchaud C, et al. Population pharmacokinetics and Bayesian estimators for intravenous mycophenolate mofetil in haematopoietic stem cell transplant patients. Br J Clin Pharmacol. 2020;86(8):1550–1559.
  • Okour M, Jacobson PA, Ahmed MA, et al. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure. J Clin Pharmacol. 2018;58(5):628–639.
  • Quintairos L, Colom H, Millan O, et al. Early prognostic performance of miR155-5p monitoring for the risk of rejection: logistic regression with a population pharmacokinetic approach in adult kidney transplant patients. PLoS One. 2021;16(1):e0245880.
  • Resendiz-Galvan JE, Romano-Aguilar M, Medellin-Garibay SE, et al. Population pharmacokinetics of mycophenolic acid in adult kidney transplant patients under prednisone and tacrolimus regimen. Eur J Pharm Sci. 2020;150:105370.
  • Riglet F, Bertrand J, Barrail-Tran A, et al. Population pharmacokinetic model of plasma and cellular mycophenolic acid in kidney transplant patients from the CIMTRE study. Drugs R D. 2020;20(4):331–342.
  • Romano-Aguilar M, Resendiz-Galvan JE, Medellin-Garibay SE, et al. Population pharmacokinetics of mycophenolic acid in Mexican patients with lupus nephritis. Lupus. 2020;29(9):1067–1077.
  • Rong Y, Mayo P, Ensom MHH, et al. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients. Clin Pharmacokinet. 2019;58(11):1483–1495.
  • Sheng C, Zhao Q, Niu W, et al. Effect of protein binding on exposure of unbound and total mycophenolic acid: a population pharmacokinetic analysis in Chinese adult kidney transplant recipients. Front Pharmacol. 2020;11:340.
  • Yang C-L, Sheng -C-C, Liao G-Y, et al. Genetic polymorphisms in metabolic enzymes and transporters have no impact on mycophenolic acid pharmacokinetics in adult kidney transplant patients co-treated with tacrolimus: a population analysis. J Clin Pharm Ther. 2021;46(6):1564–1575.
  • Yoshimura K, Yano I, Yamamoto T, et al. Population pharmacokinetics and pharmacodynamics of mycophenolic acid using the prospective data in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplantation. 2018;53(1):44–51.
  • Yu Z-C, Zhou P-J, Wang X-H, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin. 2017;38(11):1566–1579.
  • de Winter BCM, Mathot RAA, Sombogaard F, et al. Differences in clearance of mycophenolic acid among renal transplant recipients, hematopoietic stem cell transplant recipients, and patients with autoimmune disease. Ther Drug Monit. 2010;32(5):606–614.
  • de Winter BCM, Monchaud C, Premaud A, et al. Bayesian estimation of mycophenolate mofetil in lung transplantation, using a population pharmacokinetic model developed in kidney and lung transplant recipients. Clin Pharmacokinet. 2012;51(1):29–39.
  • Funaki T. Enterohepatic circulation model for population pharmacokinetic analysis. J Pharm Pharmacol. 2010;51(10):1143–1148.
  • Zeng L, Blair EYL, Nath CE, et al. Population pharmacokinetics of mycophenolic acid in children and young people undergoing blood or marrow and solid organ transplantation. Br J Clin Pharmacol. 2010;70(4):567–579.
  • Grinyo JM, Ekberg H, Mamelok RD, et al. The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard-dose or low-dose cyclosporine, low-dose tacrolimus or low-dose sirolimus: the Symphony pharmacokinetic substudy. Nephrol Dial Transplant. 2009;24(7):2269–2276.
  • Lloberas N, Torras J, Cruzado JM, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the Symphony study. Nephrol Dial Transplant. 2011;26(11):3784–3793.
  • Millan O, Budde K, Sommerer C, et al. Urinary miR-155-5p and CXCL10 as prognostic and predictive biomarkers of rejection, graft outcome and treatment response in kidney transplantation. Br J Clin Pharmacol. 2017;83(12):2636–2650.
  • Jiao Z, Zhong JY, Zhang M, et al. Total and free mycophenolic acid and its 7-o-glucuronide metabolite in Chinese adult renal transplant patients: pharmacokinetics and application of limited sampling strategies. Eur J Clin Pharmacol. 2007;63(1):27–37.
  • Geng F, Jiao Z, Dao YJ, et al. The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta. 2012;413(7–8):683–690.
  • Bullingham RES, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429–455.
  • Prokopienko AJ, Nolin TD. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev Clin Pharmacol. 2018;11(1):71–82.
  • Uwai Y, Motohashi H, Tsuji Y, et al. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–168.
  • Rong Y, Kiang TKL. Development and validation of a sensitive liquid-chromatography tandem mass spectrometry assay for mycophenolic acid and metabolites in HepaRG cell culture: characterization of metabolism interactions between p -cresol and mycophenolic acid. Biomed Chromatogr. 2019;33(8):e4549.
  • Rong Y, Kiang TKL. Mechanisms of metabolism interaction between p-cresol and mycophenolic acid. Toxicol Sci. 2020;173(2):267–279.
  • Barnes KJ, Rowland A, Polasek TM, et al. Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. Eur J Clin Pharmacol. 2014;70(9):1097–1106.
  • Hsueh C-H, Yoshida K, Zhao P, et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3. Mol Pharm. 2016;13(9):3130–3140.
  • Watanabe H, Sakaguchi Y, Sugimoto R, et al. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol. 2014;18(5):814–820.
  • Atcheson BA, Taylor PJ, Kirkpatrick CMJ, et al. Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia. Ther Drug Monit. 2004;26(3):284–286.
  • Picard N, Yee SW, Woillard J-B, et al., The Role of Organic Anion–Transporting Polypeptides and Their Common Genetic Variants in Mycophenolic Acid Pharmacokinetics. Clin Pharmacol Ther. 87(1): 100–108. 2010.
  • McLeay SC, Morrish GA, Kirkpatrick CMJ, et al. The relationship between drug clearance and body size: systematic review and meta-analysis of the literature published from 2000 to 2007. Clin Pharmacokinet. 2012;51(5):319–330.
  • El-Sheikh AAK, Koenderink JB, Wouterse AC, et al. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res. 2014;164(1):46–56.
  • Benjanuwattra J, Pruksakorn D, Koonrungsesomboon N. Mycophenolic acid and its pharmacokinetic drug-drug interactions in humans: review of the evidence and clinical implications. J Clin Pharmacol. 2020;60(3):295–311.
  • Miura M, Kagaya H, Satoh S, et al. Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit. 2008;30(5):559–564.
  • Yang Y, Liu X. Imbalance of drug transporter-CYP450s interplay by diabetes and its clinical significance. Pharmaceutics. 2020;12(4):348.
  • Djebli N, Picard N, Rerolle J-P, et al. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics. 2007;17(5):321–330.
  • Mooij MG, Schwarz UI, de Koning BAE, et al. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos. 2014;42(8):1268–1274.
  • Strassburg C, Kneip S, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002;50(2):259–265.
  • Li P, Shuker N, Hesselink DA, et al. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transpl Int. 2014;27(10):994–1004.
  • van Gelder T. How cyclosporin reduces mycophenolic acid exposure by 40% while other calcineurin inhibitors do not. Kidney Int. 2021;100:1185–1189.
  • Picard N, Levoir L, Lamoureux F, et al. Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters. Xenobiotica. 2011;41(9):752–757.
  • van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation. 1999;68(2):261–266.
  • Ette EI, Williams PJ. Population pharmacokinetics i: background, concepts, and models. Ann Pharmacother. 2004;38(10):1702–1706.
  • Kiang TK, Sherwin CM, Spigarelli MG, et al. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin Pharmacokinet. 2012;51(8):515–525.
  • Sherwin CM, Kiang TK, Spigarelli MG, et al. Fundamentals of population pharmacokinetic modelling: validation methods. Clin Pharmacokinet. 2012;51(9):573–590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.