344
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the understanding of acetaminophen toxicity mechanisms: a clinical toxicology perspective

&
Pages 601-616 | Received 15 May 2023, Accepted 13 Sep 2023, Published online: 21 Sep 2023

References

  • Huynh A, Cairns R, Brown JA, et al. Patterns of poisoning exposure at different ages: the 2015 annual report of the Australian poisons Information centres. Med J Aust. 2018;209(2):74–79. doi: 10.5694/mja17.01063
  • Gummin DD, Mowry JB, Spyker DA, et al. 2018 annual report of the American association of Poison Control Centers’ National Poison data System (NPDS): 36th annual report. Clin Toxicol (Phila). 2019;57(12):1220–1413. doi: 10.1080/15563650.2019.1677022
  • Pathiraja V, Gawarammana I, Buckley N, et al., editors. Paracetamol self-poisoning epidemiology of selected districts of Sri Lanka2019: Asia Pacific Association of Medical Toxicology 18th International Scientific Conference, Putrajaya, Malaysia.
  • Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an updated review. Arch Toxicol. 2015;89(2):193–199. doi: 10.1007/s00204-014-1432-2
  • Reuben A, Tillman H, Fontana RJ, et al. Outcomes in adults with acute liver failure between 1998 and 2013: an observational cohort study. Ann Intern Med. 2016;164(11):724–732. doi: 10.7326/M15-2211
  • Prescott L, Illingworth R, Critchley J, et al. Intravenous N-acetylcystine: the treatment of choice for paracetamol poisoning. Br Med J. 1979;2(6198):1097–1100. doi: 10.1136/bmj.2.6198.1097
  • Prescott LF. Treatment of severe acetaminophen poisoning with intravenous acetylcysteine. Arch Intern Med. 1981;141(3):386–389. doi: 10.1001/archinte.1981.00340030118021
  • Chiew AL, Gluud C, Brok J, et al. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev. 2018;2018(2). (no pagination)(CD003328). doi: 10.1002/14651858.CD003328.pub3
  • Chiew AL, Isbister GK, Kirby KA, et al. Massive paracetamol overdose: an observational study of the effect of activated charcoal and increased acetylcysteine dose (ATOM-2). Clin Toxicol (Phila). 2017;55(10):1055–1065. doi: 10.1080/15563650.2017.1334915
  • Hendrickson RG. What is the most appropriate dose of N-acetylcysteine after massive acetaminophen overdose? Clin Toxicol (Phila). 2019;57(8):686–691. doi: 10.1080/15563650.2019.1579914
  • Link S, Rampon G, Osmon S, et al. Fomepizole as an adjunct to NAC in acetaminophen overdose: a case series. Clin Toxicol (Phila). 2021;59(11):1094.
  • Shah KR, Fox C, Geib A-J, et al. Fomepizole as an adjunctive treatment in severe acetaminophen ingestions: a case series. Clin Toxicol (Phila). 2021;59(1):71–72. doi: 10.1080/15563650.2020.1775847
  • Buchan R, Caparrotta T, Eddleston M, et al. Randomised open label exploratory, safety and tolerability study with calmangafodipir in patients treated with the 12-h regimen of N-acetylcysteine for paracetamol overdose - the PP100-01 for overdose of paracetamol (POP) trial: study protocol for a randomised controlled trial 11 Medical and Health sciences 1103 clinical sciences. Trials. 2019;20(1):27.
  • Mitchell JR, Thorgeirsson SS, Potter WZ, et al. Acetaminophen-induced hepatic injury: protective role of glutathione in man and rationale for therapy. Clin Pharmacol Ther. 1974;16(4):676–684. doi: 10.1002/cpt1974164676
  • Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. 1980;10(Suppl 2):291s–298s. doi: 10.1111/j.1365-2125.1980.tb01812.x
  • Yamamoto A, Liu MY, Kurogi K, et al. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis. J Biochem. 2015;158(6):497–504. doi: 10.1093/jb/mvv062
  • Court MH, Duan SX, von Moltke LL, et al. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther. 2001;299(3):998–1006.
  • Hazai E, Vereczkey L, Monostory K. Reduction of toxic metabolite formation of acetaminophen. Biochem Biophys Res Commun. 2002;291(4):1089–1094. doi: 10.1006/bbrc.2002.6541
  • Manyike PT, Kharasch ED, Kalhorn TF, et al. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–282. doi: 10.1067/mcp.2000.104736
  • Corcoran GB, Mitchell JR, Vaishnav YN, et al. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol. 1980;18(3):536–542.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1–2):1–12. doi: 10.1016/j.mam.2008.08.006
  • Jones AL. Mechanism of action and value of N-acetylcysteine in the treatment of early and late acetaminophen poisoning: a critical review. J Toxicol Clin Toxicol. 1998;36(4):277–285. doi: 10.3109/15563659809028022
  • Mossanen JC, Tacke F. Acetaminophen-induced acute liver injury in mice. Lab Anim. 2015;49(1_suppl):30–36. doi: 10.1177/0023677215570992
  • Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced liver injury: from animal models to humans. J Clin Transl Hepatol. 2014;2(3):153–161.
  • McGill MR, Sharpe MR, Williams CD, et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012;122(4):1574–1583. doi: 10.1172/JCI59755
  • Curtis RM, Sivilotti M. A descriptive analysis of AST and ALT rise and fall following acetaminophen overdose. Clin Toxicol (Phila). 2014;52(7):697.
  • McGovern AJ, Vitkovitsky IV, DL J, et al. Can AST/ALT ratio indicate recovery after acute paracetamol poisoning? Clin Toxicol (Phila). 2015;53(3):164–167. doi: 10.3109/15563650.2015.1006399
  • Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Trans Res. 2017;3(Suppl 1):157–169. doi: 10.18053/jctres.03.2017S1.002
  • Mitchell JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 1973;187(1):185–194.
  • Leeming MG, Gamon LF, Wille U, et al. What are the potential sites of protein arylation by N-Acetyl-p-benzoquinone imine (NAPQI)? Chem Res Toxicol. 2015;28(11):2224–2233. doi: 10.1021/acs.chemrestox.5b00373
  • Cohen SD, Khairallah EA. Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metab Rev. 1997;29(1–2):59–77. doi: 10.3109/03602539709037573
  • Tirmenstein MA, Nelson SD. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3’-hydroxyacetanilide, in mouse liver. J Biol Chem. 1989;264(17):9814–9819. doi: 10.1016/S0021-9258(18)81731-8
  • Rumack BH, Bateman DN. Acetaminophen and acetylcysteine dose and duration: past, present and future. Clin Toxicol (Phila). 2012;50(2):91–98. doi: 10.3109/15563650.2012.659252
  • Rumack BH. Acetaminophen misconceptions. Hepatology. 2004;40(1):10–15. doi: 10.1002/hep.20300
  • Xie Y, McGill MR, Cook SF, et al. Time course of acetaminophen-protein adducts and acetaminophen metabolites in circulation of overdose patients and in HepaRG cells. Xenobiotica. 2015;45(10):921–929. doi: 10.3109/00498254.2015.1026426
  • Gelotte CK, Auiler JF, Lynch JM, et al. Disposition of acetaminophen at 4, 6, and 8 g/day for 3 days in healthy young adults. Clin Pharm Therap. 2007;81(6):840–848. doi: 10.1038/sj.clpt.6100121
  • Klaassen CD, Boles JW. The importance of 3‘-phosphoadenosine 5‘-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J. 1997;11(6):404–418. doi: 10.1096/fasebj.11.6.9194521
  • Mutlib AE, Goosen TC, Bauman JN, et al. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol. 2006;19(5):701–709. doi: 10.1021/tx050317i
  • Levy G, Yamada H. Drug biotransformation interactions in Man III: acetaminophen and salicylamide. J Pharm Sci. 1971;60(2):215–221. doi: 10.1002/jps.2600600212
  • Chiew AL, Isbister GK, Stathakis P, et al. Acetaminophen metabolites on presentation following an acute acetaminophen overdose (ATOM-7). Clin Pharmacol Ther. 2023;113(6):1304–1314. doi: 10.1002/cpt.2888
  • Li J, Chiew AL, Isbister GK, et al. Sulfate conjugation may be the key to hepatotoxicity in paracetamol overdose. Br J Clin Pharmacol. 2021;87(5):2392–2396. doi: 10.1111/bcp.14642
  • Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24(1):539–577. doi: 10.1146/annurev.nutr.24.012003.132418
  • Kim HJ, Madhu C, Cho JH, et al. In vivo modification of 3’-phosphoadenosine 5’-phosphosulfate and sulfate by infusion of sodium sulfate, cysteine, and methionine. Drug Metab Dispos. 1995;23(8):840–845.
  • Levy, G. Sulfate conjugation in drug metabolism: role of inorganic sulfate. Fed Proc. 1986 Jul;45(8): 2235–40. PMID: 3459670 .
  • Beck L, Silve C. Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int. 2001;59(3):835–845. doi: 10.1046/j.1523-1755.2001.059003835.x
  • Gregus Z, Oguro T, Klaassen CD. Nutritionally and chemically induced impairment of sulfate activation and sulfation of xenobiotics in vivo. Chem Biol Interact. 1994;92(1–3):169–177. doi: 10.1016/0009-2797(94)90062-0
  • Galinsky RE, Pharm G, Levy G. Evaluation of activated charcoal-sodium sulfate combination for inhibition of acetaminophen absorption and repletion of inorganic sulfate. Clin Toxicol (Phila). 1984;22(1):21–30. doi: 10.3109/00099308409035079
  • Vliegenthart A, Kimmitt RA, Seymour JH, et al. Circulating acetaminophen metabolites are toxicokinetic biomarkers of acute liver injury. Clin Pharmacol Ther. 2017;101(4):531–540. doi: 10.1002/cpt.541
  • Slattery JT, Levy G. Reduction of acetaminophen toxicity by sodium sulfate in mice. Res Commun Chem Pathol Pharmacol. 1977;18(1):167–170.
  • Hjelle JJ, Brzeznicka EA, Klaassen CD. Comparison of the effects of sodium sulfate and N-acetylcysteine on the hepatotoxicity of acetaminophen in mice. J Pharmacol Exp Ther. 1986;236(2):526–534.
  • Al-Ali AK, Al-Mustafa ZH, Qaw FS, et al. Paracetamol-induced hepatotoxicity: lack of enhancement of the hepatoprotective effect of N-acetylcysteine by sodium sulphate. Inflammopharmacology. 1998;6(3):235–241. doi: 10.1007/s10787-998-0022-4
  • Krijgsheld KR, Glazenburg EJ, Scholtens E, et al. The oxidation of L- and D-cysteine to inorganic sulfate and taurine in the rat. Biochim Biophys Acta Gen Subj. 1981;677(1):7–12. doi: 10.1016/0304-4165(81)90139-2
  • Jaeschke H, McGill MR, Sharpe MR, et al. Mechanisms of acetaminophen hepatotoxicity in humans: involvement of mitochondrial injury and nuclear DNA fragmentation in necrotic cell death. Hepatology. 2011;54(Suppl. 1):519A.
  • McGill MR, Williams CD, Xie Y, et al. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol. 2012;264(3):387–394. doi: 10.1016/j.taap.2012.08.015
  • Yan HM, Ramachandran A, Bajt ML, et al. The oxygen tension modulates acetaminophen-induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci. 2010;117(2):515–523. doi: 10.1093/toxsci/kfq208
  • Meyers LL, Beierschmitt WP, Khairallah EA, et al. Acetaminophen-induced inhibition of hepatic mitochondrial respiration in mice. Toxicol Appl Pharmacol. 1988;93(3):378–387. doi: 10.1016/0041-008X(88)90040-3
  • Jaeschke H, Adelusi OB, Akakpo JY, et al. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B. 2021;11(12):3740–3755. doi: 10.1016/j.apsb.2021.09.023
  • Ramachandran A, Jaeschke H. Acetaminophen toxicity: novel insights into mechanisms and future perspectives. Gene Expr. 2018;18(1):19–30. doi: 10.3727/105221617X15084371374138
  • Hanawa N, Shinohara M, Saberi B, et al. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem. 2008;283(20):13565–13577. doi: 10.1074/jbc.M708916200
  • Donnelly PJ, Walker RM, Racz WJ. Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch Toxicol. 1994;68(2):110–118. doi: 10.1007/s002040050043
  • Xie Y, Ramachandran A, Breckenridge DG, et al. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol. 2015;286(1):1–9. doi: 10.1016/j.taap.2015.03.019
  • Xie Y, McGill MR, Dorko K, et al. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol. 2014;279(3):266–274. doi: 10.1016/j.taap.2014.05.010
  • Agarwal R, Hennings L, Rafferty TM, et al. Acetaminophen-induced hepatotoxicity and protein nitration in neuronal nitric-oxide synthase knockout mice. J Pharmacol Exp Ther. 2012;340(1):134–142. doi: 10.1124/jpet.111.184192
  • Fujimoto K, Kumagai K, Ito K, et al. Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol. 2009;37(2):193–200. doi: 10.1177/0192623308329282
  • Ramachandran A, Lebofsky M, Weinman SA, et al. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2011;251(3):226–233. doi: 10.1016/j.taap.2011.01.004
  • Knight TR, Ho YS, Farhood A, et al. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther. 2002;303(2):468–475. doi: 10.1124/jpet.102.038968
  • Jaeschke H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther. 1990;255(3):935–941.
  • Du K, Ramachandran A, Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential. Redox Biol. 2016;10:148–156. doi: 10.1016/j.redox.2016.10.001
  • Dear JW, Ng ML, Bateman DN, et al. A metabolomic analysis of thiol response for standard and modified N-acetyl cysteine treatment regimens in patients with acetaminophen overdose. Clin Transl Sci. 2021;14(4):1476–1489. doi: 10.1111/cts.13009
  • Battelli MG, Polito L, Bortolotti M, et al. Xanthine oxidoreductase in drug metabolism: beyond a role as a detoxifying enzyme. Curr Med Chem. 2016;23(35):4027–4036. doi: 10.2174/0929867323666160725091915
  • Pavlovic D, Kocic G, Cvetkovic T, et al. A possible role of xanthine oxidase in paracetamol-induced hepatotoxicity. J Hepatol. 1996;25(SUPPL. 1):131.
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–417. doi: 10.1038/clpt.2012.96
  • Heruth DP, Shortt K, Zhang N, et al. Genetic association of single nucleotide polymorphisms with acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther. 2018;367(1):95–100. doi: 10.1124/jpet.118.248583
  • Adjei AA, Gaedigk A, Simon SD, et al. Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol. 2008;82(3):155–165. doi: 10.1002/bdra.20535
  • Zhao L, Pickering G. Paracetamol metabolism and related genetic differences. Drug Metab Rev. 2011;43(1):41–52. doi: 10.3109/03602532.2010.527984
  • Krasniak AE, Knipp GT, Svensson CK, et al. Pharmacogenomics of acetaminophen in pediatric populations: a moving target. Front Genet. 2014;5:314. doi: 10.3389/fgene.2014.00314
  • Critchley J, Nimmo G, Gregson C, et al. Inter‐subject and ethnic differences in paracetamol metabolism. Br J Clin Pharmacol. 1986;22(6):649–657. doi: 10.1111/j.1365-2125.1986.tb02953.x
  • Court MH, Papageorgiou J. Uncovering genetic and epigenetic mechanisms of human UGT variability that contribute to acetaminophen hepatotoxicity. Drug Metab Rev. 2016;48(Supplement 1):17.
  • Court MH, Zhu Z, Masse G, et al. Race, gender, and genetic polymorphism contribute to variability in acetaminophen Pharmacokinetics, metabolism, and protein-adduct concentrations in healthy African-American and European-American volunteers. J Pharmacol Exp Ther. 2017;362(3):431–440. doi: 10.1124/jpet.117.242107
  • Court MH, Freytsis M, Wang X, et al. The UDP-glucuronosyltransferase (UGT) 1A polymorphism c.2042C>G (rs8330) is associated with increased human liver acetaminophen glucuronidation, increased UGT1A exon 5a/5b splice variant mRNA ratio, and decreased risk of unintentional acetaminophen-induced acute liver failure. J Pharmacol Exp Ther. 2013;345(2):297–307. doi: 10.1124/jpet.112.202010
  • Monte AA, Arriaga Mackenzie I, Pattee J, et al. Genetic variants associated with ALT elevation from therapeutic acetaminophen. Clin Toxicol (Phila). 2022;60(11):1198–1204. doi: 10.1080/15563650.2022.2117053
  • Marzilawati AR, Ngau YY, Mahadeva S. Low rates of hepatotoxicity among Asian patients with paracetamol overdose: a review of 1024 cases. BMC Pharmacol Toxicol. 2012;13(8). (no pagination). doi: 10.1186/2050-6511-13-8
  • Green TJ, Sivilotti ML, Langmann C, et al. When do the aminotransferases rise after acute acetaminophen overdose? Clin Toxicol (Phila). 2010;48(8):787–792. doi: 10.3109/15563650.2010.523828
  • Vliegenthart AD, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol. 2015;80(3):351–362. doi: 10.1111/bcp.12699
  • Graudins A. Paracetamol poisoning in adolescents in an Australian setting: not quite adults. Emerg Med Australas. 2015;27(2):139–144. doi: 10.1111/1742-6723.12373
  • Chomchai S, Chomchai C. Predicting acute acetaminophen hepatotoxicity with acetaminophen-aminotransferase multiplication product and the psi parameter. Clin Toxicol (Phila). 2014;52(5):506–511. doi: 10.3109/15563650.2014.917180
  • Sivilotti ML, Green TJ, Langmann C, et al. Multiplying the serum aminotransferase by the acetaminophen concentration to predict toxicity following overdose. Clin Toxicol (Phila). 2010;48(8):793–799. doi: 10.3109/15563650.2010.523829
  • Wong A, Sivilotti ML, Dargan PI, et al. External validation of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity from paracetamol overdose. Clin Toxicol (Phila). 2015;53(8):807–814. doi: 10.3109/15563650.2015.1066507
  • Wong A, Sivilotti MLA, Graudins A. Accuracy of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity in modified-release paracetamol overdose. Clin Toxicol (Phila). 2017;55(5):346–351. doi: 10.1080/15563650.2017.1290253
  • Schiødt FV, Ott P, Christensen E, et al. The value of plasma acetaminophen half-life in antidote-treated acetaminophen overdosage. Clin Pharmacol Ther. 2002;71(4):221–225. doi: 10.1067/mcp.2002.121857
  • Llewellyn HP, Vaidya VS, Wang Z, et al. Evaluating the sensitivity and specificity of promising circulating biomarkers to diagnose liver injury in humans. Toxicol Sci. 2021;181(1):23–34. doi: 10.1093/toxsci/kfab003
  • Chiew AL, James LP, Isbister GK, et al. Early acetaminophen-protein adducts predict hepatotoxicity following overdose (ATOM-5). J Hepatol. 2020;72(3):450–462. doi: 10.1016/j.jhep.2019.10.030
  • Roberts DW, Lee WM, Hinson JA, et al. An immunoassay to rapidly measure acetaminophen protein adducts accurately identifies patients with acute liver injury or failure. Clin Gastroenterol Hepatol. 2017;15(4):555–62.e3. doi: 10.1016/j.cgh.2016.09.007
  • Davern TJ 2nd, James LP, Hinson JA, et al. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology. 2006;130(3):687–694. doi: 10.1053/j.gastro.2006.01.033
  • James LP, Capparelli EV, Simpson PM, et al. Acetaminophen-associated hepatic injury: evaluation of acetaminophen protein adducts in children and adolescents with acetaminophen overdose. Clin Pharmacol Ther. 2008;84(6):684–690. doi: 10.1038/clpt.2008.190
  • Heard KJ, Green JL, James LP, et al. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose. BMC Gastroenterol. 2011;11(20):1–9. doi: 10.1186/1471-230X-11-20
  • Curry SC, Padilla-Jones A, Ruha AM, et al. The relationship between circulating acetaminophen-protein adduct concentrations and alanine aminotransferase activities in patients with and without acetaminophen overdose and toxicity. J Med Toxicol. 2019;15(3):143–155. doi: 10.1007/s13181-019-00705-2
  • James LP, Letzig L, Simpson PM, et al. Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab Dispos. 2009;37(8):1779–1784. doi: 10.1124/dmd.108.026195
  • Khandelwal N, James LP, Sanders C, et al. Unrecognized acetaminophen toxicity as a cause of indeterminate acute liver failure. Hepatology. 2011;53(2):567–576. doi: 10.1002/hep.24060
  • James LP, Chiew A, Abdel-Rahman SM, et al. Acetaminophen protein adduct formation following low-dose acetaminophen exposure: comparison of immediate-release vs extended-release formulations. Eur J Clin Pharmacol. 2013;69(4):851–857. doi: 10.1007/s00228-012-1410-7
  • Wong A, Homer N, Dear JW, et al. Paracetamol metabolite concentrations following low risk overdose treated with an abbreviated 12-h versus 20-h acetylcysteine infusion. Clin Toxicol (Phila). 2019;57(5):312–317. doi: 10.1080/15563650.2018.1517881
  • Vliegenthart AD, Shaffer JM, Clarke JI, et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci Rep. 2015;5(1):15501. doi: 10.1038/srep15501
  • Dear JW, Clarke JI, Francis B, et al. Risk stratification after paracetamol overdose using mechanistic biomarkers: results from two prospective cohort studies. Lancet Gastroenterol Hepatol. 2018;3(2):104–113. doi: 10.1016/S2468-1253(17)30266-2
  • Antoine D, Dear JW, Lewis PS, et al. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 2013;58(2):777–787. doi: 10.1002/hep.26294
  • Church RJ, Kullak‐Ublick GA, Aubrecht J, et al. Candidate biomarkers for the diagnosis and prognosis of drug‐induced liver injury: an international collaborative effort. Hepatology. 2019;69(2):760–773. doi: 10.1002/hep.29802
  • Starkey Lewis PJ, Dear J, Platt V, et al. Circulating microRnas as potential markers of human drug-induced liver injury. Hepatology. 2011;54(5):1767–1776. doi: 10.1002/hep.24538
  • Beger RD, Bhattacharyya S, Yang X, et al. Translational biomarkers of acetaminophen-induced acute liver injury. Arch Toxicol. 2015;89(9):1497–1522. doi: 10.1007/s00204-015-1519-4
  • Dear JW, Antoine DJ, Starkey-Lewis P, et al. Early detection of paracetamol toxicity using circulating liver microRNA and markers of cell necrosis. Br J Clin Pharmacol. 2014;77(5):904–905. doi: 10.1111/bcp.12214
  • Possamai LA, McPhail MJ, Quaglia A, et al. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure. Crit Care Med. 2013;41(11):2543–2550. doi: 10.1097/CCM.0b013e31829791a2
  • UK Research and Innovation. MICA: point-of-care assessment of drug-induced liver injury (POC-DILI). https://gtr.ukri.org/projects?ref=MR%2FV038303%2F1#/tabOverview Accessed on [26th Jul 2023] 2023
  • Roth SE, Avigan MI, Bourdet D, et al. Next-generation DILI biomarkers: prioritization of biomarkers for qualification and best practices for biospecimen collection in drug development. Clin Pharmacol Ther. 2020;107(2):333–346. doi: 10.1002/cpt.1571
  • Wong A, Nejad C, Gantier M, et al. MicroRNA from a 12-h versus 20-h acetylcysteine infusion for paracetamol overdose. Hum Exp Toxicol. 2019;38(6):646–654. doi: 10.1177/0960327119833740
  • Kang AM, Padilla-Jones A, Fisher ES, et al. The effect of 4-methylpyrazole on oxidative metabolism of acetaminophen in human volunteers. J Med Toxicol. 2020;16(2):169–176. doi: 10.1007/s13181-019-00740-z
  • Morrison EE, Oatey K, Gallagher B, et al. Principal results of a randomised open label exploratory, safety and tolerability study with calmangafodipir in patients treated with a 12 h regimen of N-acetylcysteine for paracetamol overdose (POP trial). EBioMedicine. 2019;46:423–430. doi: 10.1016/j.ebiom.2019.07.013
  • Wang K, Zhang S, Marzolf B, et al. Circulating microRnas, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009;106(11):4402–4407. doi: 10.1073/pnas.0813371106
  • Faraldi M, Gomarasca M, Sansoni V, et al. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep. 2019;9(1):1584. doi: 10.1038/s41598-019-38505-x
  • Yang X, Salminen WF, Shi Q, et al. Potential of extracellular microRnas as biomarkers of acetaminophen toxicity in children. Toxicol Appl Pharmacol. 2015;284(2):180–187. doi: 10.1016/j.taap.2015.02.013
  • Chang J, Nicolas E, Marks D, et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1(2):106–113. doi: 10.4161/rna.1.2.1066
  • Nathwani RA, Pais S, Reynolds TB, et al. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology. 2005;41(2):380–382. doi: 10.1002/hep.20548
  • Bala S, Petrasek J, Mundkur S, et al. Circulating microRnas in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56(5):1946–1957. doi: 10.1002/hep.25873
  • Davern TJ II, James LP, Fontana RJ, et al. 784 serum acetaminophen adducts reliably distinguish acetaminophen toxicity from other causes of acute liver failure. Hepatology. 2003;38(4 Suppl. 1):538A–539A. doi: 10.1016/S0270-9139(03)80826-1
  • Prescott LF, Roscoe N, Wright P, et al. Plasma-paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet. 1971;297(7698):519–522. doi: 10.1016/S0140-6736(71)91125-1
  • Chiew AL, Buckley NA. Acetaminophen poisoning. Crit Care Clin. 2021;37(3):543–561. doi: 10.1016/j.ccc.2021.03.005
  • An JH, Lee HJ, Jung BH. Quantitative analysis of acetaminophen and its six metabolites in rat plasma using liquid chromatography/tandem mass spectrometry. Biomed Chromatogr. 2012;26(12):1596–1604. doi: 10.1002/bmc.2737
  • Chiew A, Day P, Salonikas C, et al. The comparative pharmacokinetics of modified-release and immediate-release paracetamol in a simulated overdose model. Emerg Med Australas. 2010;22(6):548–555. doi: 10.1111/j.1742-6723.2010.01354.x
  • Olsson B, Johansson M, Gabrielsson J, et al. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur J Clin Pharmacol. 1988;34(1):77–82. doi: 10.1007/BF01061422
  • Prescott LF, Donovan JW, Jarvie DR, et al. The disposition and kinetics of intravenous N-acetylcysteine in patients with paracetamol overdosage. Eur J Clin Pharmacol. 1989;37(5):501–506. doi: 10.1007/BF00558131
  • Buckpitt AR, Rollins DE, Mitchell JR. Varying effects of sulfhydryl nucleophiles on acetaminophen oxidation and sulfhydryl adduct formation. Biochem Pharmacol. 1979;28(19):2941–2946. doi: 10.1016/0006-2952(79)90590-2
  • Stravitz RT, Sanyal AJ, Reisch J, et al. Effects of N-acetylcysteine on cytokines in non-acetaminophen acute liver failure: potential mechanism of improvement in transplant-free survival. Liver Int. 2013;33(9):1324–1331. doi: 10.1111/liv.12214
  • Harrison PM, Wendon JA, Gimson AES, et al. Improvement by acetylcysteine of Hemodynamics and oxygen transport in fulminant hepatic failure. N Engl J Med. 1991;324(26):1852–1857. doi: 10.1056/NEJM199106273242604
  • Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology. 2009;51(1):246–254. doi: 10.1002/hep.23267
  • Zafarullah M, Li WQ, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60(1):6–20. doi: 10.1007/s000180300001
  • Rumack BH, Peterson RC, Koch GG, et al. Acetaminophen overdose. 662 cases with evaluation of oral acetylcysteine treatment. Arch Intern Med. 1981;141(3):380–385. doi: 10.1001/archinte.1981.00340030112020
  • Smilkstein MJ, Knapp GL, Kulig KW, et al. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N Engl J Med. 1988;319(24):1557–1562. doi: 10.1056/NEJM198812153192401
  • Harrison PM, Keays R, Bray GP, et al. Improved outcome of paracetamol-induced fulminant hepatic failure by late administration of acetylcysteine. Lancet. 1990;335(8705):1572–1573. doi: 10.1016/0140-6736(90)91388-Q
  • Gunnell D, Hawton K, Murray V, et al. Use of paracetamol for suicide and non-fatal poisoning in the UK and France: are restrictions on availability justified? J Epidemiol Community Health. 1997;51(2):175–179. doi: 10.1136/jech.51.2.175
  • Rumack BH. Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol. 2002;40(1):3–20. doi: 10.1081/CLT-120002882
  • Bateman DN, Dear JW, Thanacoody HKR. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: a randomised controlled trial (vol 383, 697, 2014). Lancet. 2014;383(9918):696. doi: 10.1016/S0140-6736(13)62062-0
  • Wong A, Graudins A. Simplification of the standard three-bag intravenous acetylcysteine regimen for paracetamol poisoning results in a lower incidence of adverse drug reactions. Clin Toxicol (Phila). 2016;54(2):115–119. doi: 10.3109/15563650.2015.1115055
  • Chiew AL, Isbister GK, Page CB, et al. Modified release paracetamol overdose: a prospective observational study (ATOM-3). Clin Toxicol (Phila). 2018;56(9):810–819. doi: 10.1080/15563650.2018.1439950
  • Marks D, Dines AM, Lipi M, et al. Clinical outcomes and predictive factors in “massive” paracetamol overdose. Clin Toxicol (Phila). 2016;54(4):423.
  • Cairney DG, Beckwith HK, Al-Hourani K, et al. Plasma paracetamol concentration at hospital presentation has a dose-dependent relationship with liver injury despite prompt treatment with intravenous acetylcysteine. Clin Toxicol (Phila). 2016;54(5):405–410. doi: 10.3109/15563650.2016.1159309
  • Green JL, Heard KJ, Reynolds KM, et al. Oral and intravenous acetylcysteine for treatment of acetaminophen toxicity: a systematic review and meta-analysis. West J Emerg Med. 2013;14(3):218–226. doi: 10.5811/westjem.2012.4.6885
  • Brok J, Buckley N, Gluud C. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev. 2006;2006(2). CD003328. doi: 10.1002/14651858.CD003328.pub2
  • Beatty L, Green R, Magee K, et al. A systematic review of ethanol and fomepizole use in toxic alcohol ingestions. Emerg Med Int. 2013;2013:638057. doi: 10.1155/2013/638057.
  • Rasamison R, Besson H, Berleur M-P, et al. Analysis of fomepizole safety based on a 16-year post-marketing experience in France. Clin Toxicol (Phila). 2020;58(7):742–747. doi: 10.1080/15563650.2019.1676899
  • Mullins ME, Yeager LH, Freeman WE. Metabolic and mitochondrial treatments for severe paracetamol poisoning: a systematic review. Clin Toxicol (Phila). 2020;58(12):1284–1296. doi: 10.1080/15563650.2020.1798979
  • Shah KR, Beuhler MC. Fomepizole as an adjunctive treatment in severe acetaminophen toxicity: a case report. Am J Emerg Med. 2019;38(2):410–e5.
  • Link SL, Rampon G, Osmon S, et al. Fomepizole as an adjunct in acetylcysteine treated acetaminophen overdose patients: a case series. Clin Toxicol (Phila). 2022;60(4):472–477. doi: 10.1080/15563650.2021.1996591
  • Pourbagher-Shahri AM, Schimmel J, Shirazi FM, et al. Use of fomepizole (4-methylpyrazole) for acetaminophen poisoning: a scoping review. Toxicol Lett. 2022;355:47–61. doi: 10.1016/j.toxlet.2021.11.005
  • Akakpo JY, Ramachandran A, Duan L, et al. Delayed treatment with 4-methylpyrazole protects against acetaminophen hepatotoxicity in mice by inhibition of c-jun n-terminal kinase. Toxicol Sci. 2019;170(1):57–68. doi: 10.1093/toxsci/kfz077
  • Filip AB, Berg SE, Mullins ME, et al. Fomepizole as an adjunctive therapy for acetaminophen poisoning: cases reported to the toxicology investigators consortium (ToxIC) database 2015-2020. Clin Toxicol (Phila). 2022;60(9):1006–1011. doi: 10.1080/15563650.2022.2070071
  • R D. Denver Health and Hospital Authority. Evaluation of the efficacy of fomepizole in the treatment of acetaminophen overdose. U.S. National Library of Medicines: ClinicalTrials.gov. https://beta.clinicaltrials.gov/study/NCT05517668 Accessed on: 19th Apr 2023
  • Glimelius B, Manojlovic N, Pfeiffer P, et al. Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx®): a placebo-controlled randomised phase II study (PLIANT). Acta oncologica. 2018;57(3):393–402. doi: 10.1080/0284186X.2017.1398836
  • Therapeutics E Aladote®- treatment of paracetamol/acetaminophen overdosing. https://www.egetis.com/pipeline/aladote/Accessed on: 2nd May 2023: © 2018-2023 Egetis Therapeutics.
  • Keays R, Harrison PM, Wendon JA, et al. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: a prospective controlled trial. BMJ. 1991;303(6809):1026–1029. doi: 10.1136/bmj.303.6809.1026
  • Rampon G, Wartman H, Osmon S, et al. Use of fomepizole as an adjunct in the treatment of acetaminophen overdose: a case series. Toxicol Commun. 2020;4(1):1–4. doi: 10.1080/24734306.2019.1705596
  • Woolum JA, Hays WB, Patel KH. Use of fomepizole, n-acetylcysteine, and hemodialysis for massive acetaminophen overdose. Am J Emerg Med. 2020;38(3):692. doi: 10.1016/j.ajem.2019.09.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.