2,523
Views
66
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier

, , , &
Pages 857-868 | Received 17 Aug 2014, Accepted 27 Oct 2014, Published online: 03 Dec 2014

References

  • Abd-Allah EF, Ezzat SM. 2005. Natural occurrence of citrinin in rice grains and its biocontrol by Trichoderma hamatum. Phytoparasitica. 33:73–84. 10.1007/BF02980928
  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA. 2012. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol. 11:2694–2703.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 30:161–175. 10.3109/07388550903524243
  • Ahmad P, Jaleel CA, Sharma S. 2010. Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian J Plant Physiol. 57:509–517. 10.1134/S1021443710040084
  • Ahmad P, John R, Sarwat M, Umar S. 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod. 2:353–366.
  • Ahmad P, Prasad MNV. 2012a. Abiotic stress responses in plants: metabolism, productivity and sustainability. New York (NY): Springer.
  • Ahmad P, Prasad MNV. 2012b. Environmental adaptations and stress tolerance in plants in the era of climate change. New York (NY): Springer Science+Business Media.
  • Ahmad P, Sarwat M, Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol. 51:167–173. 10.1007/BF03030694
  • Ahmad P, Umar S, Sharma S. 2010. Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA, editors. Plant adaptation and phytoremediation. Dordrecht: Springer; p. 99–108.
  • Al-Abbasi T, Al-Farhan A, Al-Khulaidi AW, Hall M, Llewellyn OA, Miller AG, Patzelt A. 2010. Important plant areas in the Arabian Peninsula. Edinb J Bot. 67:25–35. 10.1017/S0960428609990217
  • Alqarawi AA, Hashem A, Abd Allah EF, Alshahrani TS, Huqail AA. 2014. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biol Hung. 65(1): 61–71. 10.1556/ABiol.65.2014.1.6
  • Alqarawi AA, Hashem A, Abd Allah EF. 2014. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact. 9:802–810. 10.1080/17429145.2014.949886
  • Alqasoumi SI, Soliman GAEH, Awaad AS, Donia AERM. 2012. Antiinflammatory activity, safety and protective effects of Leptadenia pyrotechnica, Haloxylon salicornicum and Ochradenus baccatus in ulcerative colitis. Phytopharmacol. 2:58–71.
  • Al Qurainy F, Nadeem M, Khan S, Alansi S, Tarroum M. 2013. Efficient regeneration of a potential medicinal plant Ochradenus baccatus Delile from cotyledon and shoot axis. Pak J Bot. 45:501–505.
  • Amenta JS. 1964. A rapid method for quantification of lipids separated by thin layer chromatography. J Lipid Res. 5:270–272.
  • Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 55:373–399. 10.1146/annurev.arplant.55.031903.141701
  • Arora DK, Elander RP, Mukherji KG. 1992. Fungal biotechnology. Handbook of applied mycology. New York (NY): Markel Dekker; p. 4.
  • Ashraf M, Ali Q. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot. 63:266–273. 10.1016/j.envexpbot.2007.11.008
  • Ashraf M, Harris PJC. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166:3–16. 10.1016/j.plantsci.2003.10.024
  • Athar HR, Ashraf M. 2009. Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Ozturk M, Athar HR, editors. Salinity and water stress. The Netherlands: Springer Verlag; p. 1–16.
  • Azam F, Lodhi A, Farooq S, Harry-Ókuru R, Imam SH. 2005. Seed treatment with phytohormones and crop productivity. III. Physiological/biochemical changes in germinating seeds and rooting characteristics of wheat (Triticum aestivum L.) following exposure to 2,4 D. Pak J Bot. 37:865–874.
  • Azooz MM, Youssef AM, Ahmad P. 2011. Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Inter J Plant Physiol Biochem. 3:253–264.
  • Bae H, Sicher R, Kim M, Kim S, Strem M, Melnick R, Bailey B. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot. 60:3279–3295. 10.1093/jxb/erp165
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161:559–566. 10.1016/0003-2697(87)90489-1
  • Bronstein JL, Izhaki I, Nathan R, Tewksbury JJ, Spiegel O, Lotan A, Altstein O. 2007. Fleshy-fruited plants and frugivores in desert ecosystems. In: Dennis AJ, Schupp EW, Green R, Westcott DA, editors. Seed dispersal: theory and its application in a changing world. Wallingford (UK): CAB International; p. 148–177.
  • Carlberg I, Mannervik B. 1985. Glutathione-reductase. Methods Enzymol. 113:484–490. 10.1016/S0076-6879(85)13062-4
  • Dionisio-Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci Limerick. 135:1–9. 10.1016/S0168-9452(98)00025-9
  • Eisa S, Hussin S, Geissler N, Koyro HW. 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Aust J Crop Sci. 6:357–368.
  • Farooq S, Azam F. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J Plant Physiol. 163:629–637. 10.1016/j.jplph.2005.06.006
  • Gachomo EW, Kotchoni SO. 2008. The use of Trichoderma harzianum and T. viride as potential biocontrol agents against peanut microflora and their effectiveness in reducing aflatoxin contamination of infected kernels. Biotechnol. 7:439–447. 10.3923/biotech.2008.439.447
  • Hanefat OE, Sobowale AA, Ilusanya OAF, Feyisola RT. 2012. The influence of Glomus moseae and Trichoderma harzianum on phytohormone production in soybeans (Glycine max L. Mer) planted in sterilzed and unsterilzed soils. Am J Exp Agric. 2:516–524. 10.9734/AJEA/2012/910
  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species — opportunistic, avirulent plant symbionts. Nature Rev Microbiol. 2:43–56. 10.1038/nrmicro797
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. 10.1016/0003-9861(68)90654-1
  • Hejazi Mehrizi M, Shariatmadari H, Khoshgoftarmanesh AH, Dehghani F. 2012. Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. J Agr Sci Tech. 14:205–212.
  • Hermosa R, Viterbo A, Chet I, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiol. 158:17–25. 10.1099/mic.0.052274-0
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Berkeley (CA): California Agricultural Experiment Station, University of California, Circular 347; 32 p.
  • Hosono K. 1992. Effect of salt stress on lipid composition and membrane fluidity of the salt tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol. 138:91–96. 10.1099/00221287-138-1-91
  • Iqbal M, Ashraf M. 2013. Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiol Plant. 35:1093–1112. 10.1007/s11738-012-1147-z
  • Josine TL, Ji J, Wang G, Wu J. 2011. Salinity stress tissue-regenerated Rosa chinensis Jacq. improves water and proline content. Afr J Agri Res. 6:3409–3418.
  • Julkunen-Tiitto R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 33:213–217. 10.1021/jf00062a013
  • Kafi M, Nabati J, Masoumi A, Mehrgerdi MZ. 2011. Effect of salinity and silicon application on oxidative damage of sorghum (Sorghum bicolor L. Moench.). Pak J Bot. 43:2457–2462.
  • Kanwal H, Ashraf M, Hameed M. 2013. Water relations and ionic composition in the seedlings of some newly developed and candidate cultivars of wheat (Triticum aestivum L.) under saline conditions. Pak J Bot. 45:1221–1227.
  • Kar M, Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57:315–319. 10.1104/pp.57.2.315
  • Kaya C, Higgs D, Kirnak H. 2001. The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulg J Plant Physiol. 27:47–59.
  • Koca H, Bor M, Özdemir F, Türkan I. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot. 60:344–351. 10.1016/j.envexpbot.2006.12.005
  • Koyro HW, Ahmad P, Geissler N. 2012. Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV, editors. Environmental adaptations and stress tolerance of plants in the era of climate change. New York (NY): Springer Science and Business Media; p. 1–28.
  • Levitt J. 1980. Response of plants to environmental stresses. Vol. II: water, radiation, salt and other stresses. 2nd ed. New York: New York Academic Press; 606 p.
  • Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 11:591–592.
  • Marsh JB, Weinstein DB. 1966. Simple charring method for determination of lipids. J Lipid Res. 7:574–576.
  • Martínez-Medina A, Alguacil MDM, Pascual JA, van Wees SCM. 2014. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol. 40:804–815.
  • Masood A, Shah NA, Zeeshan M, Abraham G. 2006. Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Env Exp Bot. 58:216–222. 10.1016/j.envexpbot.2005.08.002
  • Mastouri F, Björkman T, Harman GE. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathol. 100:1213–1221. 10.1094/PHYTO-03-10-0091
  • Mehr ZS, khajeh H, Bahabadi SE, Sabbagh SK. 2012. Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. Int J Agron Plant Prod. 3:710–715.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22:867–880.
  • Naz R, Bano A. 2013. Influence of exogenously applied salicylic acid and plant growth promoting rhizobacteria inoculation on the growth and physiology of some sunflower (Helianthus annuus L.). Pak J Bot. 45:367–373.
  • Neumann PM. 2008. Coping mechanisms for crop plants in drought-prone environments. Ann Bot. 101:901–907. 10.1093/aob/mcn018
  • Pandolfi C, Mancuso S, Shabala S. 2012. Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ Exp Bot. 84:44–51. 10.1016/j.envexpbot.2012.04.015
  • Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A. 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem. 60:1–11. 10.1016/j.plaphy.2012.07.014
  • Pohjala L, Tammela P. 2012. Aggregating behavior of phenolic compounds — a source of false bioassay results? Molecules. 17:10774–10790. 10.3390/molecules170910774
  • Rao A, Ahmad SD, Sabir SM, Awan SI, Shah AH, Abbas SR, Shafique S, Khan F, Chaudhary A. 2013. Potential antioxidant activities improve salt tolerance in ten varieties of wheat (Triticum aestivum L.). Am J Plant Sci. 4:69–76. 10.4236/ajps.2013.46A010
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35:1039–1050. 10.1007/s11738-012-1142-4
  • Rasool S, Hameed A, Azooz MM, Rehman M, Siddiqi TO, Ahmad P. 2013. Salt stress: causes, types and response of plants. In: Ahmad P, Azooz MM, Prasad MNV, editors. Ecophysiology and response of plants under salt stress. New York (NY): Springer LLC; p. 1–24.
  • Rawat L, Singh Y, Shukla N, Kumar J. 2011. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil. 347:387–400. 10.1007/s11104-011-0858-z
  • Rawat L, Singh Y, Shukla N, Kumar J. 2013. Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceroin chickpea (Cicer arietinum L.) under salt stress conditions. Arch Phytopathol Plant Protect. 46:1442–1467. 10.1080/03235408.2013.769316
  • Resende MP, Jakoby ICMC, dos Santos LCR, Soares MA, Pereira FD, Souchie EL, Silva FG. 2014. Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum Brasiliense Cambess). Afr J Microbiol Res. 8:2616–2623. 10.5897/AJMR2014.6633
  • Sairam RK, Deshmukh PS, Shukla DS. 1997. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agron Crop Sci. 178:171–178. 10.1111/j.1439-037X.1997.tb00486.x
  • Samantary S. 2002. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere. 47:1065–1072. 10.1016/S0045-6535(02)00091-7
  • Shahid MA, Ashraf MY, Pervez MA, Ahmad R, Balal RM, Garcia-Sanchez F. 2013. Impact of salt stress on concentrations of Na+, Cl– and organic solutes in pea cultivars. Pak J Bot. 45:755–761.
  • Shoresh M, Mastouri F, Harman GE. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopathol. 48:21–43. 10.1146/annurev-phyto-073009-114450
  • Smart RE, Bingham GE. 1974. Rapid estimates of relative water content. Plant Physiol. 53:258–260. 10.1104/pp.53.2.258
  • Sofo A, Scopa A, Manfra M, de Nisco M, Tenore G, Troisi J, di Fiori R, Novellino E. 2011. Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul. 65:421–425. 10.1007/s10725-011-9610-1
  • Sultana N, Ikeda T, Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot. 42:211–220. 10.1016/S0098-8472(99)00035-0
  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC. 2010. Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia. 53:197–201. 10.1016/j.pedobi.2009.10.002
  • Wolf B. 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Comm Soil Sci Plant Anal. 13:1035–1059. 10.1080/00103628209367332
  • Zhang F, Yuan J, Yang X, Cui Y, Chen L, Ran W, Shen Q. 2013. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil. 368:433–444. 10.1007/s11104-012-1519-6
  • Zörb C, Herbst R, Forreiter C, Schubert S. 2009. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomic. 9:4209–4220.