2,582
Views
43
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content

, , , , , & show all
Pages 429-437 | Received 28 Jun 2017, Accepted 26 Sep 2017, Published online: 11 Oct 2017

References

  • Ahanger MA, Agarwal RM. 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem. 115:449–460. doi: 10.1016/j.plaphy.2017.04.017
  • Ahanger MA, Agarwal R, Tomar NS, Shrivastava M. 2015. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J Plant Interact. 10:211–223. doi: 10.1080/17429145.2015.1056260
  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR, editors. Physiological mechanisms and adaptation strategies in plants under changing environment, vol. 1. New York: Springer; p. 25–55.
  • Ahmad P, Abdel Latef., Hashem A, AbdAllah EF., Gucel S, Tran L-SP. 2016b. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci. 7: 347.
  • Ahmad P, Allah EA, Hashem A, Sarwat M, Gucel S. 2016a. Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up-regulating antioxidative system and secondary metabolites. J Plant Growth Regul. 35:936–950 doi: 10.1007/s00344-016-9592-3
  • Ahmad P, Ashraf M, Hakeem KR, Azooz M, Rasool S, Chandna R, Akram NA. 2014. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact. 9:1–9. doi: 10.1080/17429145.2012.747629
  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S. 2015a. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front. Plant Sci. 6:868
  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP, Zhang J-S. 2015b. Alleviation of cadmium toxicity in Brassica juncea L.(Czern. & Coss.) by calcium application involves various physiological and. PloS one. 10:e0114571 doi: 10.1371/journal.pone.0114571
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 30:161–175. doi: 10.3109/07388550903524243
  • Ali E, Mahmoud AM. 2013. Effect of foliar spray by different salicylic acid and zinc concentrations on seed yield and yield components of mungbean in sandy soil. Asian J Crop Sci. 5:33–40. doi: 10.3923/ajcs.2013.33.40
  • Anderson ME. 1985. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113:548–555. doi: 10.1016/S0076-6879(85)13073-9
  • Anjum NA, Aref IA, Pereira E, Ahmad A, Iqbal M. 2014. Glutathione and proline can coordinately make plants withstand the joint attack of osmotic and metal(loid) stresses. Front Plant Sci. 5:363. p. 4. DOI:10.3389/fpls.2014.00662.
  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I. 2015. Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res. 22(6):4099–4121. doi: 10.1007/s11356-014-3917-1
  • Ashraf M, McNeilly T. 2004. Salinity tolerance in brassica oilseeds. Crit Rev Plant Sci. 23:157–174. doi: 10.1080/07352680490433286
  • Bates L, Waldren R, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. doi: 10.1007/BF00018060
  • Bose J, Rodrigo-Moreno A, Shabala S. 2014. Ros homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot. 65:1241–1257. doi: 10.1093/jxb/ert430
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. 2013. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci. 14:3540–3555. doi: 10.3390/ijms14023540
  • Dionisio-Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135:1–9. doi: 10.1016/S0168-9452(98)00025-9
  • Dixon DP, Skipsey M, Edwards R. 2010. Roles for glutathione transferases in plant secondary metabolism. Phytochem. 71:338–350. doi: 10.1016/j.phytochem.2009.12.012
  • Ebrahimian E, Bybordi A. 2011. Exogenous silicium and zinc increase antioxidant enzyme activity and alleviate salt stress in leaves of sunflower. J Food Agric Environ. 9:422–427.
  • El-Tayeb M. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 45:215–224. doi: 10.1007/s10725-005-4928-1
  • Fang Z, Bouwkamp JC, Solomos T. 1998. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot. 49:503–510.
  • Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133:21–25. doi: 10.1007/BF00386001
  • Gapińska M, Skłodowska M, Gabara B. 2008. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant. 30:11–18. doi: 10.1007/s11738-007-0072-z
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48:909–930. doi: 10.1016/j.plaphy.2010.08.016
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Plant Genomic. 2014: Article ID 701596.
  • Habibi G. 2014. Hydrogen peroxide (H2O2) generation, scavenging and signaling in plants. In: Parvaiz A., editor. Oxidative damage to plants. San Diego (CA): Elsevier; p. 557–584.
  • Hasanuzzaman M, Fujita M. 2013. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicol. 22:584–596. doi: 10.1007/s10646-013-1050-4
  • Hashem A, Abd_Allah E, Alqarawi A, El-Didamony G, Alwhibi M, Egamberdieva D, Ahmad P. 2014. Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot. 46:2003–2013.
  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signal Behav. 7:1456–1466. doi: 10.4161/psb.21949
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. doi: 10.1016/0003-9861(68)90654-1
  • Hiscox JT, Israelstam G. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 57:1332–1334. doi: 10.1139/b79-163
  • Hoagland DR, Arnon DI. 1940. Crop production in artificial culture solutions and in soils with special reference to factors influencing yield absorption of inorganic nutrients. Soil Sci. 50:463–483.
  • Huang C, He W, Guo J, Chang X, Su P, Zhang L. 2005. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot. 56:3041–3049. doi: 10.1093/jxb/eri301
  • Husen A, Iqbal M, Aref IM. 2016. IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol. 37(3):421–429.
  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M. 2017. Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot. 49(3):867–877.
  • Ibrahim S, Ibrahim HA, Omer AM. 2012. Comparative study of the effects of some organic extract on sugar beet yield under saline conditions. Aust J Basic Appl Sci. 6:664–674.
  • Iqbal N, Umar S, Khan NA. 2015. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol. 178:84–91. doi: 10.1016/j.jplph.2015.02.006
  • Jiang W, Sun X, Xu H, Mantri N, Lu H. 2014. Optimal concentration of zinc sulfate in foliar spray to alleviate salinity stress in Glycine soja. J Agr Sci Tech. 16:445–460.
  • Luck H. 1971. Catalases. In: Bregmeyer H. U., editor. Methods of enzymatic analysis. New York (NY): Academic Press; p. 885–893.
  • Majer P, Neugart S, Krumbein A, Schreiner M, Hideg E. 2014. Singlet oxygen scavenging by leaf flavonoids contributes to sunlight acclimation in Tilia platyphyllos. Environ Exper Bot. 100:1–9. doi: 10.1016/j.envexpbot.2013.12.001
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Novo LAB, Covelo EF, González L. 2014. Effect of salinity on zinc uptake by Brassica juncea. Int J Phytoremediation. 16:704–718. doi: 10.1080/15226514.2013.856844
  • Osredkar J, Sustar N. 2011. Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol. S3:001. doi: 10.4172/2161-0495.S3-001
  • Prasad KVSK, Saradhi PP. 1995. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry. 39(1):45–47. doi: 10.1016/0031-9422(94)00919-K
  • Rajendrakumar CS, Suryanarayana T, Reddy AR. 1997. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett. 410:201–205. doi: 10.1016/S0014-5793(97)00588-7
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35:1039–1050. doi: 10.1007/s11738-012-1142-4
  • Samreen T, Shah HU, Ullah S, Javid M. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab J Chem. 10:S1802–S1807. doi: 10.1016/j.arabjc.2013.07.005
  • Siddiqui SN, Umar S, Iqbal M. 2015. Zinc-induced modulation of some biochemical parameters in a high-and a low-zinc-accumulating genotype of Cicer arietinum L. grown under Zn-deficient condition. Protoplasma. 252:1335–1345. doi: 10.1007/s00709-015-0767-8
  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM. 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. 6:1143.
  • Smart RE, Bingham GE. 1974. Rapid estimates of relative water content. Plant Physiol. 53:258–260. doi: 10.1104/pp.53.2.258
  • Tang X, Mu X, Shao H, Wang H, Brestic M. 2015. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol. 35:425–437. doi: 10.3109/07388551.2014.889080
  • Tavallali V, Rahemi M, Maftoun M, Panahi B, Karimi S, Ramezanian A, Vaezpour M. 2009. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Sci Hort. 123:272–279. doi: 10.1016/j.scienta.2009.09.006
  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B. 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot. 59:173–178. doi: 10.1016/j.envexpbot.2005.12.007
  • Tuteja N, Ahmad P, Panda BB, Tuteja R. 2009. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res Rev Mutat Res. 681:134–149. doi: 10.1016/j.mrrev.2008.06.004
  • van Rossum MW, Alberda M, van der Plas LH. 1997. Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci. 130:207–216. doi: 10.1016/S0168-9452(97)00215-X
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151:59–66. doi: 10.1016/S0168-9452(99)00197-1
  • Wani AS, Ahmad A, Hayat S, Fariduddin Q. 2013. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi J Biol Sci. 20:183–193. doi: 10.1016/j.sjbs.2013.01.006
  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Badakhshan H. 2014. Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.). J Plant Nutr. 37:2255–2269. doi: 10.1080/01904167.2014.920386
  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. 2011. Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress. Aust J Crop Sci. 5:1441.
  • Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 5:218–223. doi: 10.1016/S1369-5266(02)00256-X
  • Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X. 2013. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant. 35:2867–2878. doi: 10.1007/s11738-013-1325-7
  • Yousuf PY, Ahmad A, Aref IM, Ozturk M, Hemant GA, Iqbal M. 2016a. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. Protoplasma. 253:1565–1575. doi: 10.1007/s00709-015-0917-z
  • Yousuf PY, Ahmad A, Ganie AH, Iqbal M. 2016b. Salt stress-induced modulations in the shoot proteome of Brassica juncea genotypes. Environ Sci Pollut Res. 23:2391–2401. doi: 10.1007/s11356-015-5441-3
  • Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555–559. doi: 10.1016/S0308-8146(98)00102-2