488
Views
0
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (close environment)

Physio-biochemical and transcriptomics analyses reveal molecular mechanisms of enhanced UV-B stress tolerance in rice induced by titanium dioxide nanoparticles

, , , , , & show all
Article: 2328713 | Received 05 Jan 2024, Accepted 06 Mar 2024, Published online: 20 Mar 2024

References

  • Ahmad I, Zhu G, Zhou G, Song X, Hussein Ibrahim ME, Ibrahim Salih EG, Hussain S, Younas MU. 2022. Pivotal role of phytohormones and their responsive genes in plant growth and their signaling and transduction pathway under salt stress in cotton. Int J Mol Sci. 23(13):7339. doi:10.3390/ijms23137339.
  • Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA, Shehata WF, Almaghasla MI. 2023. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants. 12(2):292. doi:10.3390/plants12020292.
  • Altaf MA, Shu H, Hao Y, Mumtaz MA, Lu X, Wang Z. 2022. Melatonin affects the photosynthetic performance of pepper (Capsicum annuum L.) seedlings under cold stress. Antioxidants. 11(12):2414. doi:10.3390/antiox11122414.
  • Altammar KA. 2023. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 14:1155622. doi:10.3389/fmicb.2023.1155622.
  • Amini S, Maali-Amiri R, Mohammadi R, Kazemi-Shahandashti SS. 2017. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress. Plant Physiol Biochem. 111:39–49. doi:10.1016/j.plaphy.2016.11.011.
  • Apoorva JD, Pandey-Rai S, Agrawal SB. 2021. Untangling the UV-B radiation-induced transcriptional network regulating plant morphogenesis and secondary metabolite production. Environ Exp Bot. 192:104655. doi:10.1016/j.envexpbot.2021.104655.
  • Azadi M, Siavash Moghaddam S, Rahimi A, Pourakbar L, Popović-Djordjević J. 2021. Biosynthesized silver nanoparticles ameliorate yield, leaf photosynthetic pigments, and essential oil composition of garden thyme (Thymus vulgaris L.) exposed to UV-B stress. Journal of Environmental Chemical Engineering. 9:105919. doi:10.1016/j.jece.2021.105919.
  • Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. 2023. Rice mitogen-activated protein kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. Plant Physiol Biochem. 203:108078. doi:10.1016/j.plaphy.2023.108078.
  • Bano N, Khan S, Hamid Y, Bano F, Khan AG, Ullah MA, Li T, Ullah H, Rinklebe J, Shaheen SM. 2024. Seed nano-priming with multiple nanoparticles enhanced the growth parameters of lettuce and mitigated cadmium (Cd) bio-toxicity: an advanced technique for remediation of Cd contaminated environments. Environ Pollut. 344:123300. doi:10.1016/j.envpol.2024.123300.
  • Basit F, Bhat J, Han J, Guan Y, Jan B, Shakoor A, Alansi S. 2022. Screening of rice cultivars for Cr-stress response by using the parameters of seed germination, morpho-physiological and antioxidant analysis. Saudi J Biol Sci. 29(5):3918–3928. doi:10.1016/j.sjbs.2022.02.038.
  • Berry HM, Argueso CT. 2022. More than growth: phytohormone-regulated transcription factors controlling plant immunity, plant development and plant architecture. Curr Opin Plant Biol. 70:102309. doi:10.1016/j.pbi.2022.102309.
  • Bisht S, Sharma V, Kumari N. 2022. Biosynthesized magnetite nanoparticles from Polyalthia longifolia leaves improve photosynthetic performance and yield of Trigonella foenum-graecum under drought stress. Plant Stress. 5:100090. doi:10.1016/j.stress.2022.100090.
  • Cai F, Wu X, Zhang H, Shen X, Zhang M, Chen W, Gao Q, White JC, Tao S, Wang X. 2017. Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact. 5:101–108. doi:10.1016/j.impact.2017.01.006.
  • Chen Z, Dong Y, Huang X. 2022. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. Stress Biology. 2:51. doi:10.1007/s44154-022-00076-9.
  • Chen Z, Tao X, Khan A, Tan DKY, Luo H. 2018. Biomass accumulation, photosynthetic traits and root development of cotton as affected by irrigation and nitrogen-fertilization. Front Plant Sci. 9:173. doi:10.3389/fpls.2018.00173.
  • Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PVV. 2018. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega. 3:2479–2491. doi:10.1021/acsomega.7b01934.
  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. 2021. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci. 11:552969. doi:10.3389/fpls.2020.552969.
  • Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. 2021. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci. 11:618835. doi:10.3389/fpls.2020.618835.
  • Ewas M, Harlina PW, Shahzad R, Khames E, Ali F, Nishawy E, Elsafty N, Ibrahim HM, Gallego PP.. 2022. Constitutive expression of SlMX1 gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants. J Plant Interact. 17(1):517–536. doi:10.1080/17429145.2022.2066730.
  • Foyer CH, Hanke G. 2022. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant J. 111:642–661. doi:10.1111/tpj.15856.
  • Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. 2023. Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants. 12(4):928. doi:10.3390/plants12040928.
  • García-Sánchez S, Bernales I, Cristobal S. 2015. Early response to nanoparticles in the arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics. 16:341. doi:10.1186/s12864-015-1530-4.
  • Ghorbanpour M, Movahedi A, Hatami M, Kariman K, Bovand F, Shahid MA. 2021. Insights into nanoparticle-induced changes in plant photosynthesis. Photosynthetica. 59:570–586. doi:10.32615/ps.2021.049.
  • Ghouri F, Shahid MJ, Liu J, Sun L, Riaz M, Imran M, Ali S, Liu X, Shahid MQ. 2023. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. J Hazard Mater. 458:132019. doi:10.1016/j.jhazmat.2023.132019.
  • Ghouri F, Shahid MJ, Zhong M, Zia MA, Alomrani SO, Liu J, Sun L, Ali S, Liu X, Shahid MQ. 2024. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO2 nanoparticles on gene expression, cytological and physiological changes. Sci Total Environ. 911:168709. doi:10.1016/j.scitotenv.2023.168709.
  • Gigli-Bisceglia N, Engelsdorf T, Hamann T. 2020. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci. 77:2049–2077. doi:10.1007/s00018-019-03388-8.
  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S. 2020. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep. 10:912. doi:10.1038/s41598-020-57794-1.
  • Gu L. 2023. Optimizing the electron transport chain to sustainably improve photosynthesis. Plant Physiol. 193(4):2398–2412. doi:10.1093/plphys/kiad490.
  • Guo J, Sun B, He H, Zhang Y, Tian H, Wang B. 2021. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci. 22(9):4921. doi:10.3390/ijms22094921.
  • Hanif S, Saleem MF, Sarwar M, Irshad M, Shakoor A, Wahid MA, Khan HZ. 2021. Biochemically triggered heat and drought stress tolerance in rice by proline application. J Plant Growth Regul. 40:305–312. doi:10.1007/s00344-020-10095-3.
  • Haskirli H, Yilmaz O, Ozgur R, Uzilday B, Turkan I. 2021. Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. Phytochemistry. 182:112592. doi:10.1016/j.phytochem.2020.112592.
  • He J, Yue X, Wang R, Zhang Y. 2011. Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. J Exp Bot. 62:2657–2666. doi:10.1093/jxb/erq431.
  • Herrera-Vásquez A, Fonseca A, Ugalde JM, Lamig L, Seguel A, Moyano TC, Gutiérrez RA, Salinas P, Vidal EA, Holuigue L. 2021. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. J Exp Bot. 72:1891–1905. doi:10.1093/jxb/eraa534.
  • Hidema J, Kumagai T. 2006. Sensitivity of rice to ultraviolet-B radiation. Ann Bot. 97:933–942. doi:10.1093/aob/mcl044.
  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A. 2016. The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci. 7:984. doi:10.3389/fpls.2016.00984.
  • Hu J, Wu X, Wu F, Chen W, White JC, Yang Y, Wang B, Xing B, Tao S, Wang X. 2020. Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). J Hazard Mater. 389:121837. doi:10.1016/j.jhazmat.2019.121837.
  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 10:800. doi:10.3389/fpls.2019.00800.
  • Huang X, Zheng D, Feng N, Huang A, Zhang R, Meng F, Jie Y, Mu B, Mu D, Zhou H. 2023. Effects of prohexadione calcium spraying during the booting stage on panicle traits, yield, and related physiological characteristics of rice under salt stress. PeerJ. 11:e14673. doi:10.7717/peerj.14673.
  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. 2018. Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci. 9:1387. doi:10.3389/fpls.2018.01387.
  • Jia KP, Mi J, Ali S, Ohyanagi H, Moreno JC, Ablazov A, Balakrishna A, Berqdar L, Fiore A, Diretto G, et al. 2022. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol Plant. 15:151–166. doi:10.1016/j.molp.2021.09.008.
  • Jiang Z, Zhu H, Zhu H, Tao Y, Liu C, Liu J, Yang F, Li M. 2022. Exogenous ABA Enhances the Antioxidant Defense system of maize by regulating the AsA-GSH cycle under drought stress. Sustainability. 14(5):3071. doi:10.3390/su14053071.
  • Jing M, Zhang H, Wei M, Tang Y, Xia Y, Chen Y, Shen Z, Chen C. 2022. Reactive oxygen species partly mediate DNA methylation in responses to different heavy metals in pokeweed. Front Plant Sci. 13:845108. doi:10.3389/fpls.2022.845108.
  • Karvar M, Azari A, Rahimi A, Maddah-Hosseini S, Ahmadi-Lahijani MJ. 2022. Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiol Plant. 44:14. doi:10.1007/s11738-021-03349-4.
  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC. 2012. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics. 13:544. doi:10.1186/1471-2164-13-544.
  • Khan I, Awan SA, Rizwan M, Akram MA, Zia-ur-Rehman M, Wang X, Zhang X, Huang L. 2023. Physiological and transcriptome analyses demonstrate the silver nanoparticles mediated alleviation of salt stress in pearl millet (Pennisetum glaucum L). Environ Pollut. 318:120863. doi:10.1016/j.envpol.2022.120863.
  • Khosla A, Paper JM, Boehler AP, Bradley AM, Neumann TR, Schrick K. 2014. HD-Zip proteins GL2 and HDG11 have redundant functions in ArabidopsisTrichomes, and GL2 activates a positive feedback loop via MYB23. Plant Cell. 26:2184–2200. doi:10.1105/tpc.113.120360.
  • Kiany T, Pishkar L, Sartipnia N, Iranbakhsh A, Barzin G. 2022. Effects of silicon and titanium dioxide nanoparticles on arsenic accumulation, phytochelatin metabolism, and antioxidant system by rice under arsenic toxicity. Environ Sci Pollut Res. 29:34725–34737. doi:10.1007/s11356-021-17927-z.
  • Kong W, Sun T, Zhang C, Deng X, Li Y. 2021. Comparative transcriptome analysis reveals the mechanisms underlying differences in salt tolerance between indica and japonica rice at seedling stage. Front Plant Sci. 12:725436. doi:10.3389/fpls.2021.725436.
  • Korver RA, Koevoets IT, Testerink C. 2018. Out of shape during stress: a key role for Auxin. Trends Plant Sci. 23:783–793. doi:10.1016/j.tplants.2018.05.011.
  • Kreslavski VD, Huang X, Semenova G, Khudyakova A, Shirshikova G, Hummatov N, Zharmukhamedov SK, Li X, Allakhverdiev SI, Nie C, Shabala S. 2020. Linking sensitivity of photosystem II to UV-B with chloroplast ultrastructure and UV-B absorbing pigments contents in A. thaliana L. phyAphyB double mutants. Plant Growth Regul. 91:13–21. doi:10.1007/s10725-020-00584-6.
  • Kumar D, Dhankher OP, Tripathi RD, Seth CS. 2023. Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 454:131418. doi:10.1016/j.jhazmat.2023.131418.
  • Lai M, Ghouri F, Sarwar S, alomrani SO, Riaz M, Haider FU, Liu J, Imran M, Ali S, Liu X, Shahid MQ. 2023. Modulation of metal transporters, oxidative stress and cell abnormalities by synergistic application of silicon and titanium oxide nanoparticles: A strategy for cadmium tolerance in rice. Chemosphere. 345:140439. doi:10.1016/j.chemosphere.2023.140439.
  • Lee S, Masclaux-Daubresse C. 2021. Current understanding of leaf senescence in rice. Int J Mol Sci. 22(9):4515. doi:10.3390/ijms22094515.
  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res. 121:69–79. doi:10.1007/s12011-007-8028-0.
  • Li N, Liu H, Sun J, Zheng H, Wang J, Yang L, Zhao H, Zou D. 2018. Transcriptome analysis of two contrasting rice cultivars during alkaline stress. Sci Rep. 8:9586. doi:10.1038/s41598-018-27940-x.
  • Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. 2020. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere. 239: 124794. doi:10.1016/j.chemosphere.2019.124794.
  • Liang YE, Zhang H, Zhu J, Wang H, Mei W, Jiang B, Ding X, Dai H. 2023. Transcriptomic analysis reveals the involvement of flavonoids synthesis genes and transcription factors in dracaena cambodiana response to ultraviolet-B radiation. Forests. 14(5):979. doi:10.3390/f14050979.
  • Liaqat W, Altaf MT, Barutçular C, Nawaz H, Ullah I, Basit A, Mohamed HI. 2023. Ultraviolet-B radiation in relation to agriculture in the context of climate change: a review. Cereal Res Commun. 1:24.
  • Lin L, Wu J, Jiang M, Wang Y. 2021. Plant mitogen-activated protein kinase cascades in environmental stresses. Int J Mol Sci. 22(4):1543. doi:10.3390/ijms22041543.
  • Ling C, Wang X, Li Z, He Y, Li Y. 2022. Effects and mechanism of enhanced UV-B radiation on the flag leaf angle of rice. Int J Mol Sci. 23(21):12776. doi:10.3390/ijms232112776.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. doi:10.1006/meth.2001.1262.
  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. 2020. Environmental and health impacts of air pollution: a review. Front Public Health. 8:14. doi:10.3389/fpubh.2020.00014.
  • Milewska-Hendel A, Sala K, Gepfert W, Kurczyńska E. 2021. Gold nanoparticles-induced modifications in cell wall composition in barley roots. Cells. 10(8):1965. doi:10.3390/cells10081965.
  • Mirakhorli T, Ardebili ZO, Ladan-Moghadam A, Danaee E. 2021. Bulk and nanoparticles of zinc oxide exerted their beneficial effects by conferring modifications in transcription factors, histone deacetylase, carbon and nitrogen assimilation, antioxidant biomarkers, and secondary metabolism in soybean. PLoS One. 16:e0256905. doi:10.1371/journal.pone.0256905.
  • Mittal D, Kaur G, Singh P, Yadav K, Ali SA. 2020. Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotech. 2:579954. doi:10.3389/fnano.2020.579954.
  • Mmbando GS, Teranishi M, Hidema J. 2020. Very high sensitivity of African rice to artificial ultraviolet-B radiation caused by genotype and quantity of cyclobutane pyrimidine dimer photolyase. Sci Rep. 10:3158. doi:10.1038/s41598-020-59720-x.
  • Mohidem NA, Hashim N, Shamsudin R, Che Man H. 2022. Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture. 12(6):741. doi:10.3390/agriculture12060741.
  • Moradi Rikabad M, Pourakbar L, Siavash Moghaddam S, Popović-Djordjević J. 2019. Agrobiological, chemical and antioxidant properties of saffron (Crocus sativus L.) exposed to TiO2 nanoparticles and ultraviolet-B stress. Ind Crops Prod. 137:137–143. doi:10.1016/j.indcrop.2019.05.017.
  • Moustakas M, Sperdouli I, Adamakis IS, Moustaka J, İşgören S, Şaş B. 2022. Harnessing the role of foliar applied salicylic acid in decreasing chlorophyll content to reassess photosystem II photoprotection in crop plants. Int J Mol Sci. 23(13):7038. doi:10.3390/ijms23137038.
  • Mu DW, Feng NJ, Zheng DF, Zhou H, Liu L, Chen GJ, Mu B. 2022. Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings. Sci Rep. 12:20439. doi:10.1038/s41598-022-24747-9.
  • Mustafa N, Raja NI, Ilyas N, Ikram M, Mashwani ZUR, Ehsan M. 2021. Foliar applications of plant-based titanium dioxide nanoparticles to improve agronomic and physiological attributes of wheat (Triticum aestivum L.) plants under salinity stress. Green Process Synth. 10:246–257. doi:10.1515/gps-2021-0025.
  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. 2014. An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci. 1324:7–14. doi:10.1111/nyas.12540.
  • Nazir MM, Li Q, Noman M, Ulhassan Z, Ali S, Ahmed T, Zeng F, Zhang G. 2022. Calcium Oxide nanoparticles have the role of alleviating arsenic toxicity of barley. Front Plant Sci. 13:843795. doi:10.3389/fpls.2022.843795.
  • Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, et al. 2021. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020. Photochem Photobiol Sci. 20:1–67. doi:10.1007/s43630-020-00001-x.
  • Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Lam SE, Khandaker MU, Bradley DA. 2022. Biological agents for synthesis of nanoparticles and their applications. J King Saud University - Sci. 34:101869. doi:10.1016/j.jksus.2022.101869.
  • Peng M, Shahzad R, Gul A, Subthain H, Shen S, Lei L, Zheng Z, Zhou J, Lu D, Wang S, et al. 2017. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun. 8:1975. doi:10.1038/s41467-017-02168-x.
  • Piccini C, Cai G, Dias MC, Romi M, Longo R, Cantini C. 2020. UV-B radiation affects photosynthesis-related processes of two Italian Olea europaea (L.) varieties differently. Plants. 9(12):1712. doi:10.3390/plants9121712.
  • Pontin MA, Piccoli PN, Francisco R, Bottini R, Martinez-Zapater JM, Lijavetzky D. 2010. Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol. 10:224. doi:10.1186/1471-2229-10-224.
  • Qian C, Chen Z, Liu Q, Mao W, Chen Y, Tian W, Liu Y, Han J, Ouyang X, Huang X. 2020. Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol Plant. 13:777–792. doi:10.1016/j.molp.2020.02.015.
  • Rady MM, Salama MMM, Kuşvuran S, Kuşvuran A, Ahmed AF, Ali EF, Farouk HA, Osman AS, Selim KA, Mahmoud AEM. 2023. Exploring the role of novel biostimulators in suppressing oxidative stress and reinforcing the antioxidant defense systems in Cucurbita pepo plants exposed to cadmium and lead toxicity. Agronomy. 13(7):1916. doi:10.3390/agronomy13071916.
  • Rakgotho T, Ndou N, Mulaudzi T, Iwuoha E, Mayedwa N, Ajayi RF. 2022. Green-synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture. 12(5):597. doi:10.3390/agriculture12050597.
  • Rastogi RP, Richa Kumar A, Tyagi MB, Sinha RP. 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010:1. doi:10.4061/2010/592980.
  • Sah SK, Reddy KR, Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. 7:571.
  • Saidi MN, Mahjoubi H, Yacoubi I. 2023. Transcriptome meta-analysis of abiotic stresses-responsive genes and identification of candidate transcription factors for broad stress tolerance in wheat. Protoplasma. 260:707–721. doi:10.1007/s00709-022-01807-5.
  • Santin M, Simoni S, Vangelisti A, Giordani T, Cavallini A, Mannucci A, Ranieri A, Castagna A. 2023. Transcriptomic analysis on the peel of UV-B-exposed peach fruit reveals an upregulation of phenolic- and UVR8-related pathways. Plants. 12(9):1818. doi:10.3390/plants12091818.
  • Scheibe R, Fickenscher K, Ashton AR. 1986. Studies on the mechanism of the reductive activation of NADP-malate dehydrogenase by thioredoxin m and low-molecular-weight thiols. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 870:191–197. doi:10.1016/0167-4838(86)90221-9.
  • Šebesta M, Kolenčík M, Sunil BR, Illa R, Mosnáček J, Ingle AP, Urík M. 2021. Field application of ZnO and TiO2 nanoparticles on agricultural plants. Agronomy. 11:2281. doi:10.3390/agronomy11112281.
  • Shahzad R, Ewas M, Harlina PW, Khan SU, Zhenyuan P, Nie X, Nishawy E. 2021a. β-Sitosterol differentially regulates key metabolites for growth improvement and stress tolerance in rice plants during prolonged UV-B stress. J Gen Eng Biotech. 19(1):79. doi:10.1186/s43141-021-00183-6.
  • Shahzad R, Harlina PW, Ewas M, Zhenyuan P, Nie X, Gallego PP, Ullah Khan S, Nishawy E, Khan AH, Jia H. 2021b. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativa L.) by suppression of ABA levels and upregulation of secondary metabolites. J Plant Int. 16:533–549. doi:10.1080/17429145.2021.2002444.
  • Shahzad R, Harlina PW, Gallego PP, Flexas J, Ewas M, Leiwen X, Karuniawan A. 2023. The seaweed Ascophyllum nodosum -based biostimulant enhances salt stress tolerance in rice ( Oryza sativa L.) by remodeling physiological, biochemical, and metabolic responses. J Plant Int. 18(1). doi:10.1080/17429145.2023.2266514.
  • Singh P, Singh I, Shah K. 2020. Alterations in antioxidative machinery and growth parameters upon application of nitric oxide donor that reduces detrimental effects of cadmium in rice seedlings with increasing days of growth. S Afr J Bot. 131:283–294. doi:10.1016/j.sajb.2020.02.022.
  • Song Y, Jiang M, Zhang H, Li R. 2021. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza Sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules. 26(8):2196. doi:10.3390/molecules26082196.
  • Song Y, Ma B, Guo Q, Zhou L, Zhou X, Ming Z, You H, Zhang C. 2023. MYB pathways that regulate UV-B-induced anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). Front Plant Sci. 14:1125382. doi:10.3389/fpls.2023.1125382.
  • Spök A, Sprink T, Allan AC, Yamaguchi T, Dayé C. 2022. Towards social acceptability of genome-edited plants in industrialised countries? Emerging evidence from Europe, United States, Canada, Australia, New Zealand, and Japan. Frontiers in Genome Editing. 4:899331. doi:10.3389/fgeed.2022.899331.
  • Stefanov MA, Rashkov GD, Apostolova EL. 2022. Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress. Int J Mol Sci. 23:3768. doi:10.3390/ijms23073768.
  • Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X. 2020. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci. 21(3):782. doi:10.3390/ijms21030782.
  • Sun L, Wang J, Song K, Sun Y, Qin Q, Xue Y. 2019. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress. Sci Rep. 9:10177. doi:10.1038/s41598-019-46684-w.
  • Sztatelman O, Grzyb J, Gabryś H, Banaś AK. 2015. The effect of UV-B on arabidopsis leaves depends on light conditions after treatment. BMC Plant Biol. 15:281. doi:10.1186/s12870-015-0667-2.
  • Taha RS, Seleiman MF, Shami A, Alhammad BA, Mahdi AHA. 2021. Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants. 10:1040. doi:10.3390/plants10061040.
  • Tan KC, Lim HS, Jafri M, Z M. 2018. Study on solar ultraviolet erythemal dose distribution over peninsular Malaysia using ozone monitoring instrument. Egypt J Remote Sens Space Sci. 21:105–110.
  • Tawfik MM, Mohamed MH, Sadak MS, Thalooth AT. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bull Nat Res Cent. 45:177. doi:10.1186/s42269-021-00624-9.
  • Tighe-Neira R, Reyes-Díaz M, Nunes-Nesi A, Recio G, Carmona E, Corgne A, Rengel Z, Inostroza-Blancheteau C. 2020. Titanium dioxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. Sci Hortic. 269:109418. doi:10.1016/j.scienta.2020.109418.
  • Tolosa LN, Zhang Z. 2020. The role of major transcription factors in Solanaceous food crops under different stress conditions: current and future perspectives. Plants. 9:56. doi:10.3390/plants9010056.
  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK. 2017. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem. 110:70–81. doi:10.1016/j.plaphy.2016.06.026.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151:59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S. 2017. Abscisic acid signaling and abiotic stress tolerance in plants. A review on current knowledge and future prospects. Front Plant Sci. 8:161.
  • Wang A, Li J, Al-Huqail AA, Al-Harbi MS, Ali EF, Wang J, Ding Z, Rekaby SA, Ghoneim AM, Eissa MA. 2021a. Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials. 11(10):2670. doi:10.3390/nano11102670.
  • Wang J, Li M, Feng J, Yan X, Chen H, Han R. 2021b. Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. Chemosphere. 281:130809. doi:10.1016/j.chemosphere.2021.130809.
  • Wei B, Hou K, Zhang H, Wang X, Wu W. 2020. Integrating transcriptomics and metabolomics to studies key metabolism, pathways and candidate genes associated with drought-tolerance in Carthamus tinctorius L. Under drought stress. Ind Crops Prod. 151:112465. doi:10.1016/j.indcrop.2020.112465.
  • Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, Sulzberger B, Bais AF, McKenzie RL, et al. 2014. Solar ultraviolet radiation in a changing climate. Nat Clim Change. 4:434–441. doi:10.1038/nclimate2225.
  • Wishnick M, Daniel Lane M. 1971. Methods in enzymology. Meth Enzymol. 23:570–577. doi:10.1016/S0076-6879(71)23129-3.
  • Wu S, Tian J, Ren T, Wang Y. 2022. Osmotic adjustment and antioxidant system regulated by nitrogen deposition improve photosynthetic and growth performance and alleviate oxidative damage in dwarf bamboo under drought stress. Front Plant Sci. 13:819071. doi:10.3389/fpls.2022.819071.
  • Xie C, Wang P, Gu Z, Yang R. 2023. Spermidine alleviates oxidative damage and enhances phenolic compounds accumulation in barley seedlings under UV-B stress. J Sci Food Agric. 103:648–656. doi:10.1002/jsfa.12176.
  • Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S. 2020. Light signaling and UV-B-mediated plant growth regulation. J Integr Plant Biol. 62:1270–1292. doi:10.1111/jipb.12932.
  • Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F. 2021. Applications of multi-omics technologies for crop improvement. Front Plant Sci. 12:563953. doi:10.3389/fpls.2021.563953.
  • Yang Y, Zhang L, Chen P, Liang T, Li X, Liu H. 2020. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 39:e101928. doi:10.15252/embj.2019101928.
  • Yu GH, Li W, Yuan ZY, Cui HY, Lv CG, Gao ZP, Han B, Gong YZ, Chen GX. 2013. The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica. 51:33–44. doi:10.1007/s11099-012-0081-z.
  • Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi HK, Arshad M. 2017. Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem. 65:5598–5606. doi:10.1021/acs.jafc.7b01843.
  • Zavafer A, Mancilla C. 2021. Concepts of photochemical damage of photosystem II and the role of excessive excitation. J Photochem Photobiol C. 47:100421. doi:10.1016/j.jphotochemrev.2021.100421.
  • Zhang F, Guo H, Huang J, Yang C, Li Y, Wang X, Qu L, Liu X, Luo J. 2020a. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. Sci China Life Sci. 63(7):1037–1052. doi:10.1007/s11427-019-1604-3.
  • Zhang M, He S, Zhan Y, Qin B, Jin X, Wang M, Zhang Y, Hu G, Teng Z, Wu Y. 2019. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PLoS One. 14:e0226542.
  • Zhang W, Long J, Geng J, Li J, Wei Z. 2020b. Impact of Titanium Dioxide Nanoparticles on Cd Phytotoxicity and Bioaccumulation in Rice (Oryza sativa L.). Int J Environ Res Public Health. 17(9):2979. doi:10.3390/ijerph17092979.
  • Zhang Y, Berman A, Shani E. 2023. Plant hormone transport and localization: signaling molecules on the move. Annu Rev Plant Biol. 74:453–479. doi:10.1146/annurev-arplant-070722-015329.
  • Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H. 2018. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut. 239:689–697. doi:10.1016/j.envpol.2018.04.066.
  • Zhao B, Wang L, Pang S, Jia Z, Wang L, Li W, Jin B. 2020. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Ind Crops Prod. 151:112483. doi:10.1016/j.indcrop.2020.112483.
  • Zhen S, Bugbee B. 2020. Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant Cell Environ. 43:1259–1272. doi:10.1111/pce.13730.
  • Zhuge XL, Xu H, Xiu ZJ, Yang HL. 2020. Biochemical functions of glutathione S-Transferase family of Salix babylonica. Front Plant Sci. 11:364. doi:10.3389/fpls.2020.00364.