5,247
Views
12
CrossRef citations to date
0
Altmetric
Review

Using haptic stimulation to enhance auditory perception in hearing-impaired listeners

Pages 63-74 | Received 30 Jul 2020, Accepted 10 Dec 2020, Published online: 29 Dec 2020

References

  • Zeng FG, Rebscher S, Harrison W, et al. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 2008;1:115–142.
  • Spriet A, Van Deun L, Eftaxiadis K, et al. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the nucleus freedom cochlear implant system. Ear Hear. 2007 Feb;28(1):62–72.
  • Dorman MF, Loiselle LH, Cook SJ, et al. Sound source localization by normal-hearing listeners, hearing-impaired listeners and cochlear implant listeners. Audiol Neurootol. 2016 Apr;21(3):127–131.
  • Miller CW, Bates E, Brennan M. The effects of frequency lowering on speech perception in noise with adult hearing-aid users. Int J Audiol. 2016 Mar;55(5):305–312.
  • Fletcher MD, Hadeedi A, Goehring T, et al. Electro-haptic enhancement of speech-in-noise performance in cochlear implant users. Sci Rep. 2019 Aug;9(1):11428.
  • Fletcher MD, Mills SR, Goehring T. Vibro-tactile enhancement of speech intelligibility in multi-talker noise for simulated cochlear implant listening. Trends Hear. 2018 Jan;22:1–11.
  • Huang J, Sheffield B, Lin P, et al. Electro-tactile stimulation enhances cochlear implant speech recognition in noise. Sci Rep. 2017 May;7(1):2196.
  • Fletcher MD, Song H, Perry SW. Electro-haptic stimulation enhances speech recognition in spatially separated noise for cochlear implant users. Sci Rep. 2020 Jul;10(1):12723.
  • Fletcher MD, Cunningham RO, Mills SR. Electro-haptic enhancement of spatial hearing in cochlear implant users. Sci Rep. 2020 Jan;10(1):1621.
  • Fletcher MD, Zgheib J. Haptic sound-localisation for use in cochlear implant and hearing-aid users. Sci Rep. 2020 Aug;10(1):14171.
  • Fletcher MD, Thini N, Perry SW. Enhanced pitch discrimination for cochlear implant users with a new haptic neuroprosthetic. Sci Rep. 2020 Jun;10(1):10354.
  • Zeng FG. Cochlear implants: why don’t more people use them? Hear J. 2007;60(3):48–49.
  • Ding X, Tian H, Wang W, et al. Cochlear implantation in China: review of 1237 cases with an emphasis on complications. ORL J Otorhinolaryngol Relat Spec. 2009;71(4):192–195.
  • Khan MI, Mukhtar N, Saeed SR, et al. The Pakistan (Lahore) cochlear implant programme: issues relating to implantation in a developing country. J Laryngol Otol. 2007 Aug;121(8):745–750.
  • Bodington E, Saeed SR, Smith MCF, et al. A narrative review of the logistic and economic feasibility of cochlear implants in lower-income countries. Cochlear Implants Int. 2020;16:1–10.
  • Farinetti A, Ben Gharbia D, Mancini J, et al. Cochlear implant complications in 403 patients: comparative study of adults and children and review of the literature. Eur Ann Otorhinolaryngol Head Neck Dis. 2014 Jun;131(3):177–182.
  • Krishnamoorthy K, Samy RN, Shoman N. The challenges of starting a cochlear implant programme in a developing country. Curr Opin Otolaryngol Head Neck Surg. 2014 Oct;22(5):367–372.
  • Kushalnagar P, Mathur G, Moreland CJ, et al. Infants and children with hearing loss need early language access. J Clin Ethics. 2010 Apr;21(2):143–154.
  • Ouellet C, Cohen H. Speech and language development following cochlear implantation. J Neurosci. 1999;12(3–4):271–288.
  • Organization WH. Deafness and hearing loss [cited 2020 Aug 20]. Available from: https://www.who.int/mediacentre/factsheets/fs300/en/
  • Bess FH, Dodd-Murphy J, Parker RA. Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status. Ear Hear. 1998 Oct;19(5):339–354.
  • Lieu JE. Speech-language and educational consequences of unilateral hearing loss in children. Arch Otolaryngol Head Neck Surg. 2004 May;130(5):524–530.
  • Olusanya BO, Newton VE. Global burden of childhood hearing impairment and disease control priorities for developing countries. Lancet. 2007 Apr 14;369(9569):1314–1317.
  • Tucci D, Merson MH, Wilson BS. A summary of the literature on global hearing impairment: current status and priorities for action. Otol Neurotol. 2010 Jan;31(1):31–41.
  • Olusanya BO, Neumann KJ, Saunders JE. The global burden of disabling hearing impairment: a call to action. Bull World Health Organ. 2014 May 1;92(5):367–373.
  • Goodfellow LD. Experiments on the senses of touch and vibration. J Acoust Soc Am. 1934;6(1):45–50.
  • Gault RH. Touch as a substitute for hearing in the interpretation and control of speech. Arch Otolaryngol. 1926;3(2):121–135.
  • Gault RH. On the effect of simultaneous tactual-visual stimulation in relation to the interpretation of speech. J Soc Psychol. 1930;24(4):498–517.
  • Gault RH. Progress in experiments on tactile interpretation of oral speech. J Soc Psychol. 1924;19:155–159.
  • Bach-y-Rita P. Tactile sensory substitution studies. Ann N Y Acad Sci. 2004 May;1013(1):83–91.
  • Bach-y-Rita P. Brain mechanisms in sensory substitution. New York: Academic Press; 1972.
  • Bach-y-Rita P, Collins CC, Saunders FA, et al. Vision substitution by tactile image projection. Nature. 1969 Mar 8;221(5184):963–964.
  • Bach-y-Rita P, Tyler ME, Kaczmarek KA. Seeing with the brain. Int J Hum Comput. 2003 Nov;15(2):285–295.
  • Kishon-Rabin L, Boothroyd A, Hanin L. Speechreading enhancement: a comparison of spatial-tactile display of voice fundamental frequency (F-0) with auditory F-0. J Acoust Soc Am. 1996 Jul;100(1):593–602.
  • Plant G. The selection and training of tactile aid users. In: Summers IR editor. Tactile aids for the hearing impaired.Whurr, London; 1992:146–166.
  • Brooks PL, Frost BJ. Evaluation of a tactile vocoder for word recognition. J Acoust Soc Am. 1983 March;74(1):34–39.
  • Brooks PL, Frost BJ, Mason JL, et al. Acquisition of a 250-word vocabulary through a tactile vocoder. J Acoust Soc Am. 1985 May;77(4):1576–1579.
  • Thornton ARD, Phillips AJ. A comparative trial of four vibrotactile aids. In: Summers IR, editor. Tactile Aids for the hearing impaired. Whurr Publishers, London; 1992. p. 231–251.
  • Drullman R, Bronkhorst AW. Speech perception and talker segregation: effects of level, pitch, and tactile support with multiple simultaneous talkers. J Acoust Soc Am. 2004 Nov;116(5):3090–3098.
  • Peters BR, Wyss J, Manrique M. Worldwide trends in bilateral cochlear implantation. Laryngoscope. 2010 May;120(Suppl 2):17–44.
  • RJM VH, Tyler RS. Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am. 2003 Mar;113(3):1617–1630.
  • Litovsky RY, Parkinson A, Arcaroli J. Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear Hear. 2009 Aug;30(4):419–431.
  • Finbow J, Bance M, Aiken S, et al. A comparison between wireless CROS and bone-anchored hearing devices for single-sided deafness: a pilot study. Otol Neurotol. 2015 Jun;36(5):819–825.
  • Grewal AS, Kuthubutheen J, Smilsky K, et al. The role of a new contralateral routing of signal microphone in established unilateral cochlear implant recipients. Laryngoscope. 2015 Jan;125(1):197–202.
  • Kurien G, Hwang E, Smilsky K, et al. The benefit of a wireless contralateral routing of signals (CROS) microphone in unilateral cochlear implant recipients. Otol Neurotol. 2019 Feb;40(2):82–88.
  • Dorman MF, Natale SC, Agrawal S. The value of unilateral CIs, CI-CROS and bilateral CIs, with and without beamformer microphones, for speech understanding in a simulation of a restaurant environment. Audiol Neurootol. 2018 Dec;23(5):270–276.
  • Gescheider GA. Some comparisons between touch and hearing. IEEE Trans Hum Mach. 1970 Mar;11(1):28–35.
  • Frost BJ, Richardson BL. Tactile localization of sounds - acuity, tracking moving sources, and selective attention. J Acoust Soc Am. 1976 Apr;59(4):907–914.
  • Richardson BL, Frost BJ. Tactile localization of the direction and distance of sounds. Percept Psychophys. 1979 Apr;25(4):336–344.
  • Richardson BL, Wuillemin DB, Saunders FJ. Tactile discrimination of competing sounds. Percept Psychophys. 1978 Dec;24(6):546–550.
  • Gault RH. Recent developments in vibro-tactile research. J Franklin Inst. 1936 Jun;221(6):703–719.
  • Fletcher MD, Zgheib J, Perry SW. Sensitivity to haptic sound-localisation cues. Sci Rep. 2020.
  • Aronoff JM, Yoon YS, Freed DJ, et al. The use of interaural time and level difference cues by bilateral cochlear implant users. J Acoust Soc Am. 2010 Mar;127(3):87–92.
  • Dunn CC, Perreau A, Gantz B, et al. Benefits of localization and speech perception with multiple noise sources in listeners with a short-electrode cochlear implant. J Am Acad Audiol. 2010 Jan;21(1):44–51.
  • Verschuur CA, Lutman ME, Ramsden R, et al. Auditory localization abilities in bilateral cochlear implant recipients. Otol Neurotol. 2005 Sep;26(5):965–971.
  • McDermott HJ. Music perception with cochlear implants: a review. Trends Amplif. 2004 Mar;8(2):49–82.
  • Brockmeier SJ, Fitzgerald D, Searle O, et al. The MuSIC perception test: a novel battery for testing music perception of cochlear implant users. Cochlear Implants Int. 2011 Feb;12(1):10–20.
  • Roberts B, Brunstrom JM. Perceptual segregation and pitch shifts of mistuned components in harmonic complexes and in regular inharmonic complexes. J Acoust Soc Am. 1998 Oct;104(4):2326–2338.
  • Huang J, Lu T, Sheffield B, et al. Electro-tactile stimulation enhances cochlear-implant melody recognition: effects of rhythm and musical training. Ear Hear. 2019 Oct;41(1):160.
  • Luo X, Hayes L. Vibrotactile stimulation based on the fundamental frequency can improve melodic contour identification of normal-hearing listeners with a 4-channel cochlear implant simulation. Front Neurosci. 2019 Oct;13:1145.
  • Drennan WR, Oleson JJ, Gfeller K, et al. Clinical evaluation of music perception, appraisal and experience in cochlear implant users. Int J Audiol. 2015 Feb;54(2):114–123.
  • Kang R, Nimmons GL, Drennan W, et al. Development and validation of the university of washington clinical assessment of music perception test. Ear Hear. 2009 Aug;30(4):411–418.
  • Bleidt R, Borsum A, Fuchs H, et al. Object-based audio: opportunities for improved listening experience and increased listener involvement. SMPTE Motion Imaging J. 2015 Oct;124(5):1–13.
  • Ward LA, Shirley BG. Personalization in object-based audio for accessibility: A review of advancements for hearing impaired listeners. J Audio Eng Soc. 2019 Jun;67(7/8):584–597.
  • Peterson PM, Wei SM, Rabinowitz WM, et al. Robustness of an adaptive beamforming method for hearing aids. Acta Otolaryngol Suppl. 1990;469(sup469):85–90.
  • Dorman MF, Gifford RH. Speech understanding in complex listening environments by listeners fit with cochlear implants. J Speech Lang Hear Res. 2017 Oct;60(10):3019–3026.
  • Burr D, Silva O, Cicchini GM, et al. Temporal mechanisms of multimodal binding. Proc R Soc B Biol Sci. 2009 May 22;276(1663):1761–1769.
  • Ernst MO, Bulthoff HH. Merging the senses into a robust percept. Trends Cogn Sci. 2004 Apr;8(4):162–169.
  • Fujisaki W, Nishida S. Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals. Exp Brain Res. 2005 Oct;166(3–4):455–464.
  • Parise CV, Ernst MO. Correlation detection as a general mechanism for multisensory integration. Nat Commun. 2016 Jun;7(1):11543.
  • Parise CV, Spence C, Ernst MO. When correlation implies causation in multisensory integration. Curr Biol. 2012 Jan 10;22(1):46–49.
  • Launer S, Zakis JA, Moore BCJ. Hearing aid signal processing. Vol. 56. Cham: Springer; 2016.
  • Chen JD, Benesty J, Huang Y. A minimum distortion noise reduction algorithm with multiple microphones. IEEE Trans Audio Speech. 2008 Mar;16(3):481–493.
  • Szurley J, Bertrand A, Van Dijk B, et al. Binaural noise cue preservation in a binaural noise reduction system with a remote microphone signal. IEEE ACM Audio Speech. 2016 May;24(5):952–966.
  • Schulte K. Fonator system: speech stimulation and speech feedback by technically amplified one-channel vibrations. In: editor, Fant G. International symposium on speech communication ability and profound deafness. Vol. 36. Washington: AG Bell Association; 1972. p. 351-353.
  • Verrillo RT. Change in vibrotactile thresholds as a function of age. Sens Process. 1979 3;3(1):49–59.
  • Byrne D, Dillon H, Tran K, et al. An international comparison of long-term average speech spectra. J Acoust Soc Am. 1994 Oct;96(4):2108–2120.
  • Weisenberger JM. Evaluation of the siemens minifonator vibrotactile aid. J Speech Hear Res. 1989 Mar;32(1):24–32.
  • Goff GD. Differential discrimination of frequency of cutaneous mechanical vibration. J Exp Psychol. 1967 Jun;74(2):294–299.
  • Rothenberg M, Verrillo RT, Zahorian SA, et al. Vibrotactile frequency for encoding a speech parameter. J Acoust Soc Am. 1977 Oct;62(4):1003–1012.
  • Tyler RS. Frequency resolution in hearing impaired listeners. In: Moore BCJ, editor. Frequency selectivity in hearing. London: Academic; 1986. p. 309-371.
  • Pretorius LL, Hanekom JJ. Free field frequency discrimination abilities of cochlear implant users. Hear Res. 2008 Oct;244(1–2):77–84.
  • Abberton E, Fourcin AJ. Intonation and speaker identification. Lang Speech. 1978 Dec;21(4):305–318.
  • Titze IR. Physiologic and acoustic differences between male and female voices. J Acoust Soc Am. 1989 Apr;85(4):1699–1707.
  • Most T, Peled M. Perception of suprasegmental features of speech by children with cochlear implants and children with hearing aids. J Deaf Stud Deaf Educ. 2007 May;12(3):350–361.
  • Peng SC, Tomblin JB, Turner CW. Production and perception of speech intonation in pediatric cochlear implant recipients and individuals with normal hearing. Ear Hear. 2008 Jun;29(3):336–351.
  • Meister H, Landwehr M, Pyschny V, et al. The perception of prosody and speaker gender in normal-hearing listeners and cochlear implant recipients. Int J Audiol. 2009 Jul;48(1):38–48.
  • Xin L, Fu QJ, Galvin JJ 3rd. Vocal emotion recognition by normal-hearing listeners and cochlear implant users. Trends Amplif. 2007 Dec;11(4):301–315.
  • Roberts B, Brunstrom JM. Perceptual fusion and fragmentation of complex tones made inharmonic by applying different degrees of frequency shift and spectral stretch. J Acoust Soc Am. 2001 Nov;110(5):2479–2490.
  • Pascoe DP. Clinical measurements of the auditory dynamic range and their relation to formulas for hearing aid gain. In: Jensen JH, editor. Hearing aid fitting, 13th danavox symposium. 1988: 129–152.
  • Zeng FG, Galvin JJ 3rd. Amplitude mapping and phoneme recognition in cochlear implant listeners. Ear Hear. 1999 Feb;20(1):60–74.
  • Zeng FG, Grant G, Niparko J, et al. Speech dynamic range and its effect on cochlear implant performance. J Acoust Soc Am. 2002 Jan;111(1):377–386.
  • Skinner MW, Holden LK, Holden TA, et al. Speech recognition at simulated soft, conversational, and raised-to-loud vocal efforts by adults with cochlear implants. J Acoust Soc Am. 1997 Jun;101(6):3766–3782.
  • Galvin JJ 3rd, Fu QJ. Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users. Hear Res. 2009 Apr;250(1–2):46–54.
  • Gescheider GA, Zwislocki JJ, Rasmussen A. Effects of stimulus duration on the amplitude difference limen for vibrotaction. J Acoust Soc Am. 1996 Oct;100(4 Pt 1):2312–2319.
  • Craig JC. Difference threshold for intensity of tactile stimuli. Percept Psychophys. 1972 Mar;11(2):150–152.
  • Harris J. Loudness discrimination. J Speech Hear Dis. 1963; 18–23.
  • Penner MJ, Leshowitz B, Cudahy E, et al. Intensity discrimination for pulsed sinusoids of various frequencies. Percept Psychophys. 1974 May;15(3):568–570.
  • Florentine M, Buus S, Mason CR. Level discrimination as a function of level for tones from 0.25 to 16-kHz. J Acoust Soc Am. 1987 May;81(5):1528–1541.
  • Weisenberger JM. Sensitivity to amplitude-modulated vibrotactile signals. J Acoust Soc Am. 1986 Dec;80(6):1707–1715.
  • Drullman R, Festen JM, Plomp R. Effect of temporal envelope smearing on speech reception. J Acoust Soc Am. 1994 Feb;95(2):1053–1064.
  • Van Tasell DJ, Soli SD, Kirby VM, et al. Speech waveform envelope cues for consonant recognition. J Acoust Soc Am. 1987 Oct;82(4):1152–1161.
  • Summers IR, Gratton DA. Choice of speech features for tactile presentation to the profoundly deaf. IEEE Trans Rehabil Eng. 1995 3;Mar(1):117–121.
  • Brown CA, Bacon SP. Low-frequency speech cues and simulated electric-acoustic hearing. J Acoust Soc Am. 2009 Mar;125(3):1658–1665.
  • Kong YY, Carlyon RP. Improved speech recognition in noise in simulated binaurally combined acoustic and electric stimulation. J Acoust Soc Am. 2007 Jun;121(6):3717–3727.
  • Lai YH, Tsao Y, Lu X, et al. Deep learning-based noise reduction approach to improve speech intelligibility for cochlear implant recipients. Ear Hear. 2018 Aug;39(4):795–809.
  • Goehring T, Bolner F, Monaghan JJ, et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Hear Res. 2017 Feb;344:183–194.
  • Geffen G, Rosa V, Luciano M. Effects of preferred hand and sex on the perception of tactile simultaneity. J Clin Exp Neuropsychol. 2000 Apr;22(2):219–231.
  • Klump RG, Eady HR. Some measurements of interaural time difference thresholds. J Acoust Soc Am. 1956 Jun;28(5):859–860.
  • Francart T, Lenssen A, Wouters J. Enhancement of interaural level differences improves sound localization in bimodal hearing. J Acoust Soc Am. 2011 Nov;130(5):2817–2826.
  • Pirhosseinloo S, Kokkinakis K. An interaural magnification algorithm for enhancement of naturally-occurring level differences. Interspeech: San Francisco, USA. 2016. p. 2558–2561.
  • Williges B, Jurgens T, Hu H, et al. Coherent coding of enhanced interaural cues improves sound localization in noise with bilateral cochlear implants. Trends Hear. 2018;22:1-18.
  • Gick B, Ikegami Y, Derrick D. The temporal window of audio-tactile integration in speech perception. J Acoust Soc Am. 2010 Nov;128(5):342–346.
  • Fujisaki W, Shimojo S, Kashino M, et al. Recalibration of audiovisual simultaneity. Nat Neurosci. 2004 7; Jul(7): 773–778.
  • Keetels M, Vroomen J. Temporal recalibration to tactile-visual asynchronous stimuli. Neurosci Lett. 2008 Jan 10;430(2):130–134.
  • Navarra J, Soto-Faraco S, Spence C. Adaptation to audiotactile asynchrony. Neurosci Lett. 2007 Feb 8;413(1):72–76.
  • Van der Burg E, Alais D, Cass J. Rapid recalibration to audiovisual asynchrony. J Neurosci. 2013 Sep;33(37):14633–14637.
  • Wiggins IM, Seeber BU. Linking dynamic-range compression across the ears can improve speech intelligibility in spatially separated noise. J Acoust Soc Am. 2013 Feb;133(2):1004–1016.
  • Demain S, Metcalf CD, Merrett GV, et al. A narrative review on haptic devices: relating the physiology and psychophysical properties of the hand to devices for rehabilitation in central nervous system disorders. Disabil Rehabil Assist Technol. 2013 May;8(3):181–189.
  • Kaczmarek KA, Webster JG, Bachyrita P, et al. Electrotactile and vibrotactile displays for sensory substitution systems. Ieee T Bio-Med Eng. 1991 Jan;38(1):1–16.
  • Dodgson GS, Brown BH, Freeston IL, et al. Electrical-stimulation at the wrist as an aid for the profoundly deaf. Clin Phys Physiol Meas. 1983 Nov;4(4):403–416.
  • Summers L. Signal processing strategies for single-channel systems. In: Summers IR, editor. Tactile aids for the hearing impaired. Whurr Publishers, London; 1992. pp. 110–127.
  • Peurala SH, Pitkanen K, Sivenius J, et al. Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clin Rehabil. 2002 Nov;16(7):709–716.
  • Saunders FA. Electrocutaneous displays. In: Geldard FA, editor. Cutaneous communication systems and devices. Austin, TX: The Psychonomic Society; 1973. p. 20–26.
  • Sparks DW, Ardell LA, Bourgeois M, et al. Investigating the MESA (multipoint electrotactile speech aid): the transmission of connected discourse. J Acoust Soc Am. 1979 Mar;65(3):810–815.
  • Brown BH, Stevens JC. Electrical stimulation of the skin. In: Summers IR editor. Tactile aids for the hearing impaired. Whurr, London; 1992: 37–56.
  • Pezent E, Israr A, Samad M, et al. Tasbi: multisensory squeeze and vibrotactile wrist haptics for augmented and virtual reality. World Haptics, Facebook Research, Tokyo, Japan.; 2019.
  • Tsetserukou D. HaptiHug: a novel haptic display for communication of hug over a distance. In: editors, JBF VE, Bergmann Tiest WM, FCT VDH. Haptics: generating and perceiving tangible sensations. eurohaptics 2010. lecture notes in computer science. Vol. 6191. Berlin, Heidelberg: Springer; 2010. p. 340–347.
  • Zheng Y, Morrell JB, editors. Haptic actuator design parameters that influence affect and attention. IEEE Haptics Symposium; Vancouver; 2012.
  • Ciesla K, Wolak T, Lorens A, et al. Immediate improvement of speech-in-noise perception through multisensory stimulation via an auditory to tactile sensory substitution. Restor Neurol Neurosci. 2019;37(2):155–166.
  • Johansson RS, Vallbo AB. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol. 1979 Jan;286(1):283–300.
  • Summers L, Whybrow JJ, Gratton DA, et al. Tactile information transfer: a comparison of two stimulation sites. J Acoust Soc Am. 2005 Oct;118(4):2527–2534.
  • Matscheko M, Ferscha A, Riener A, et al. Tactor placement in wrist worn wearables. IEEE Int Sym Wrbl Co. 2010.
  • Carcedo MG, Chua SH, Perrault S, et al. HaptiColor: interpolating color information as haptic feedback to assist the colorblind. CHI Conference on Human Factors in Computing Systems. San Jose, California, USA: Association for Computing Machinery; 2016. p. 3572–3583.
  • Yamamoto S, Kitazawa S. Reversal of subjective temporal order due to arm crossing. Nat Neurosci. 2001 Jul;4(7):759–765.
  • Shore DI, Spry E, Spence C. Confusing the mind by crossing the hands. Cogn Brain Res. 2002 Jun;14(1):153–163.
  • Rahman MS, Yau JM. Somatosensory interactions reveal feature-dependent computations. J Neurophysiol. 2019 Jul 1;122(1):5–21.
  • Blamey PJ, Clark GM. A wearable multiple-electrode electrotactile speech processor for the profoundly deaf. J Acoust Soc Am. 1985 Apr;77(4):1619–1620.
  • Sparks DW, Kuhl PK, Edmonds AE, et al. Investigating the MESA (multipoint electrotactile speech aid): the transmission of segmental features of speech. J Acoust Soc Am. 1978 Jan;63(1):246–257.
  • Novich SD, Eagleman DM. Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Exp Brain Res. 2015 Oct;233(10):2777–2788.
  • Wilska A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol Scand. 1954 Jul 18;31(2–3):284–289.
  • Mancini F, Bauleo A, Cole J, et al. Whole-body mapping of spatial acuity for pain and touch. Ann Neurol. 2014 Jun;75(6):917–924.
  • Leveque JL, Dresler J, Ribot-Ciscar E, et al. Changes in tactile spatial discrimination and cutaneous coding properties by skin hydration in the elderly. J Invest Dermatol. 2000 Sep;115(3):454–458.