2,680
Views
70
CrossRef citations to date
0
Altmetric
Original Article

Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID

, , , , , , , , , , , , , & show all
Pages 1229-1242 | Received 25 Nov 2015, Accepted 17 May 2016, Published online: 28 Jun 2016

References

  • Adam N, Schmitt C, De Bruyn L, Knapen D, Blust R. 2015. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Sci Total Environ 526:233–42
  • Arts JH, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, et al. 2014. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharm 70:492–506
  • Arts JH, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, et al. 2015. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 71:S1–27
  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–8
  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A. 2015. Toxicity of 12 metal based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 2:630–44
  • Bhattacharya K, Andón FT, El-Sayed R, Fadeel B. 2013. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev 65:2087–97
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–7
  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. 2013a. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–200
  • Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. 2013b. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 8:e64060
  • Chen G, Vijver MG, Peijnenburg WJ. 2015. Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: applicability for toxicity prediction by (Q)SARs. Altern Lab Anim 43:221–40
  • Choi JY, Ramachandrran G, Kandlikar M. 2009. The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43:3030–4
  • Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B. 2015. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10:1–9
  • Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, et al. 2013. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–82
  • Djurišić AB, Leung YH, Ng AM, Xu XY, Lee PK, Degger N, Wu RS. 2015. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11:26–44
  • EC, 2008. Parliament and Council: Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16. December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006, 2008
  • EC, 2012. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Second regulatory review on nanomaterials, 3.10.2012, COM(2012) 572 final. Brussels, Belgium: European Commission
  • Fadeel B, Garcia-Bennett AE. 2010. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–74
  • Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, et al. 2015. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One 10:e0127174
  • Garner KL, Suh S, Lenihan HS, Keller AA. 2015. Species sensitivity distributions for engineered nanomaterials. Environ Sci Technol 49:5753–9
  • Gebel T, Foth H, Damm G, Freyberger A, Kramer PJ, Lilienblum W, et al. 2014. Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 88:2191–211
  • George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, et al. 2011. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:1805–17
  • Godwin H, Nameth C, Avery D, Bergeson LL, Bernard D, Beryt E, et al. 2015. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9:3409–17
  • Handy RD, van den Brink N, Chappell M, Mühling M, Behra R, Dušinská M, et al. 2012. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:933–72
  • Hansen SF, Baun A. 2012. When enough is enough. Nat Nanotechnol 7:409–11
  • Hartung T. 2010. Food for thought … on alternative methods for nanoparticle safety testing. Altex 27:87–95
  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–16
  • Hitchman A, Sambrook Smith GH, Ju-Nam Y, Sterling M, Lead JR. 2013. The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 90:410–16
  • Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, et al. 2012. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics 4:350–60
  • ISO, 2010. ISO 21338:2010(E). Water quality – kinetic determination of the inhibitory effects of sediment, other solids and coloured samples on the light emission of Vibrio fischeri (kinetic luminescent bacteria test). Geneva, Switzerland: International Organization for Standardization
  • Ivask A, Bondarenko O, Jepihhina N, Kahru A. 2010. Profiling of the reactive oxygen species related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–16
  • Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmäe M, et al. 2015. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 15:1914–29
  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, et al. 2013. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154
  • Jemec A, Kahru A, Potthoff A, Drobne D, Heinlaan M, Böhme S, et al. 2016. An interlaboratory comparison of nanosilver characterisation and hazard identification: harmonising techniques for high quality data. Environ Int 87:20–32
  • Jiang J, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J.Nanopart Res 11:77–89
  • Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. 2015. NanoE-Tox: new and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J Nanotechnol 6:1788–804
  • Kahru A, Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269:105–19
  • Käkinen A, Bondarenko O, Ivask A, Kahru A. 2011. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11:10502–21
  • Kandarova H, Letašiova S. 2011. Alternative methods in toxicology: pre-validated and validated methods. Interdiscip Toxicol 4:107–13
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dynam 203:253–310
  • Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. 2013. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano 7:6997–7010
  • Kreyling WG, Semmler-Behnkea M, Chaudhry Q. 2010. A complementary definition of nanomaterial. Nano Today 5:165–8
  • Krug HF. 2014. Nanosafety research-are we on the right track? Angew Chem Int Ed Engl 53:12304–19
  • Kurvet I, Ivask A, Bondarenko O, Sihtmäe M, Kahru A. 2011. LuxCDABE-transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri. Sensors (Basel) 11:7865–78
  • Kwak JI, Cui R, Nam SH, Kim SW, Chae Y, An YJ. 2016. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems. Nanotoxicology 10:521–30
  • Li Y, Zhang W, Niu J, Chen Y. 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–73
  • Maynard AD. 2016. Navigating the risk landscape. Nat Nanotechnol 11:211–12
  • Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63
  • Nam SH, Shin YJ, Lee WM, Kim SW, Kwak JI, Yoon SJ, An YJ. 2015. Conducting a battery of bioassays for gold nanoparticles to derive guideline value for the protection of aquatic ecosystems. Nanotoxicology 9:326–35
  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–21
  • Nel AE. 2013. Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med 274:561–77
  • Notter DA, Mitrano DM, Nowack B. 2014. Are nanosized or dissolved metals more toxic in the environment? A meta-analysis. Environ Toxicol Chem 33:2733–9
  • OECD. 2004. Guidelines for the testing of chemicals/section 2. Effects on biotic systems: Daphnia sp. Acute immobilisation test. No. 202. Paris, France: OECD Publisher
  • OECD. 2010. Series on testing and assessment: No. 129 Guidance document on using cytotoxicity tests to estimate starting doses for acute oral systemic toxicity tests. Paris, France: OECD Publisher
  • OECD. 2011. Freshwater algae and cyanobacteria, growth inhibition test, Test No. 201. Paris, France: OECD Publisher
  • OECD. 2012. Six years of OECD work on the safety of manufactured nanomaterials: achievements and future opportunities. [Online] Available at: http://www.oecd.org/science/nanosafety/
  • OECD, 2013. Test No. 236: fish embryo acute toxicity (FET) test. OECD guideline test chemical section 2. Paris, France: OECD Publisher
  • Oomen AG, Bleeker EA, Bos PM, van Broekhuizen F, Gottardo S, Groenewold M, et al. 2015. Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12:13415–34
  • Petersen EJ, Diamond SA, Kennedy AJ, Goss GG, Ho K, Lead J, et al. 2015. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol 49:9532–47
  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–8
  • Suppi S, Kasemets K, Ivask A, Künnis-Beres K, Sihtmäe M, Kurvet I, et al. 2015. A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. J Hazard Mater 286:75–84
  • Suresh AK, Pelletier DA, Doktycz MJ. 2013. Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–74
  • Valant J, Drobne D. 2012. Biological reactivity of TiO2 nanoparticles assessed by ex vivo testing. Protoplasma 249:835–42
  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF. 2016. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–74
  • Vindimian E. 2005. MS Excel macro REGTOX EV7.0.5.xls. [Online] Available at: http://eric.vindimian.9online.fr/
  • von Moos N, Slaveykova VI. 2014. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-state of the art and knowledge gaps. Nanotoxicology 8:605–30
  • Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. 2015. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–27
  • Warheit DB, Donner M. 2015. How meaningful are risk determinations in the absence of a complete dataset? Making the case for publishing standardized test guideline and ‘no effect’ studies for evaluating the safety of nanoparticulates versus spurious ‘high effect’ results from single investigative studies. Sci Technol Adv Mater 16:034603
  • Witasp E, Kupferschmidt N, Bengtsson L, Hultenby K, Smedman C, Paulie S, et al. 2009. Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicol Appl Pharmacol 239:306–19
  • Zhang L, Mizumoto K, Sato N, Ogawa T, Kusumoto M, Niiyama H, Tanaka M. 1999. Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett 142:129–37
  • Zou J, Feng H, Mannerström M, Heinonen T, Pyykkö I. 2012. Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J Nanobiotechnol 12:52