3,117
Views
120
CrossRef citations to date
0
Altmetric
Original Article

Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

, , , , , , , , , , , , , & show all
Pages 1263-1275 | Received 03 Dec 2015, Accepted 02 May 2016, Published online: 07 Jul 2016

References

  • Birch ME, Ku BK, Evans DE, Ruda-Eberenz TA. 2011. Exposure and emissions monitoring during carbon nanofiber production–Part I: elemental carbon and iron-soot aerosols. Ann Occup Hyg 55:1016–36
  • Borm PJ, Driscoll K. 1996. Particles, inflammation and respiratory tract carcinogenesis. Toxicol Lett 88:109–13
  • Bourdon JA, Halappanavar S, Saber AT, Jacobsen NR, Williams A, Wallin H, et al. 2012a. Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol Sci 127:474–84
  • Bourdon JA, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS, et al. 2012b. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol 9:5
  • Bowman AB, Kwakye GF, Herrero HE, Aschner M. 2011. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203
  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J. 2003. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–214
  • Crossgrove J, Zheng W. 2004. Manganese toxicity upon overexposure. NMR Biomed 17:544–53
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5
  • Donaldson K, Stone V. 2003. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 39:405–10
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–56
  • Elgrabli D, Floriani M, bella-Gallart S, Meunier L, Gamez C, Delalain P, et al. 2008. Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol 5:20
  • Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, et al. 2009. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 9:36–43
  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. 2007. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–6
  • Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, Ghissassi FE, Bouvard V, et al. 2014. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. The Lancet Oncol 15:1427–8
  • Hamilton RF, Jr., Wu Z, Mitra S, Shaw PK, Holian A. 2013. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10:57
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, et al. 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–9
  • Husain M, Kyjovska ZO, Bourdon-Lacombe J, Saber AT, Jensen KA, Jacobsen NR, et al. 2015. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation. Toxicol Appl Pharmacol 289:573–88
  • Husain M, Saber AT, Guo C, Jacobsen NR, Jensen KA, Yauk CL, et al. 2013. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol Appl Pharmacol 269:250–62
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. 2006. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum 86:1–294
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. 2012. Nickel and nickel compounds. IARC Monogr 100C:169–218
  • Jackson P, Hougaard KS, Vogel U, Wu D, Casavant L, Williams A, et al. 2011. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat Res 745:73–83
  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U. 2015. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56:183–203
  • Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2
  • Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, et al. 2008. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 49:476–87
  • Jacobsen NR, Saber AT, White P, Moller P, Pojana G, Vogel U, et al. 2007. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen 48:451–61
  • Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, et al. 2011. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24:2028–39
  • Kim JE, Lee S, Lee AY, Seo HW, Chae C, Cho MH. 2014. Intratracheal exposure to multi-walled carbon nanotubes induces a nonalcoholic steatohepatitis-like phenotype in C57BL/6J mice. Nanotoxicology 9:13–23
  • Kobler C, Poulsen SS, Saber AT, Jacobsen NR, Wallin H, Yauk C, et al. 2015. Time-dependent subcellular distribution and effects of carbon nanotubes in lungs of mice. PLoS One 10:e0116481
  • Kuschner WG, Wong H, D'Alessandro A, Quinlan P, Blanc PD. 1997. Human pulmonary responses to experimental inhalation of high concentration fine and ultrafine magnesium oxide particles. Environ Health Perspect 105:1234–7
  • Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U. 2015. DNA damage following pulmonary exposure by instillation to low doses of carbon black (Printex 90) nanoparticles in mice. Environ Mol Mutagen 56:41–9
  • Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, et al. 2010. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol 22:369–81
  • Leppanen M, Korpi A, Mikkonen S, Yli-Pirila P, Lehto M, Pylkkanen L, et al. 2015. Inhaled silica-coated TiO2 nanoparticles induced airway irritation, airflow limitation and inflammation in mice. Nanotoxicology 9:210–18
  • Liu X, Hurt RH, Kane AB. 2010. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon NY 48:1961–9
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, et al. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–81
  • Mikkelsen L, Sheykhzade M, Jensen KA, Saber AT, Jacobsen NR, Vogel U, et al. 2011. Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO(2). Part Fibre Toxicol 8:32
  • Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Todoroki M, et al. 2012. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology 6:587–99
  • Muhle H, Pott F, Bellmann B, Takenaka S, Ziem U. 1987. Inhalation and injection experiments in rats to test the carcinogenicity of MMMF. Ann Occup Hyg 31:755–64
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, li-Boucetta H, Nunes A, et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–600
  • Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, et al. 2015. Risk assessment of the carbon nanotube group. Risk Anal 35:1940–56
  • NIOSH. 1978. Occupational Safety and Health Guideline for Cobalt. Washington: U.S. Department of Health & Human Services, 1–5
  • NIOSH. 2013. Current intelligence bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. DHHS Publication No. 2013–145. Washington: U.S. Department of Health & Human Services, 1–184
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–8
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–47
  • Poulsen SS, Jacobsen NR, Labib S, Wu D, Husain M, Williams A, et al. 2013. Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells. PLoS One 8:e80452
  • Poulsen SS, Saber AT, Mortensen A, Szarek J, Wu D, Williams A, et al. 2015a. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease. Toxicol Appl Pharmacol 283:210–22
  • Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, et al. 2015b. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16–32
  • Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D. 2014. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol 11:59
  • Saber AT, Jacobsen NR, Jackson P, Poulsen SS, Kyjovska ZO, Halappanavar S, et al. 2014. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:517–31
  • Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G, Hougaard KS, Nyendi AN, et al. 2013. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS One 8:e69020
  • Sager TM, Castranova V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6:15
  • Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, et al. 2014. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 8:317–27
  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, et al. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–42
  • Snyder-Talkington BN, Dymacek J, Porter DW, Wolfarth MG, Mercer RR, Pacurari M, et al. 2013. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses. Toxicol Appl Pharmacol 272:476–89
  • Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Buresti G, et al. 2012. Comparative cyto-genotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells. Toxicol In Vitro 26:831–40
  • USP 30 NF 25. 2007. Bacterial endotoxins test
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40