672
Views
66
CrossRef citations to date
0
Altmetric
Short Communication

Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs

, , , , , , , , , & show all
Pages 1207-1214 | Received 09 Dec 2015, Accepted 03 May 2016, Published online: 11 Jul 2016

References

  • Alaraby M, Hernandez A, Marcos R. 2016. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Nanotoxicology 26:1–12
  • Base CF, Mesmer RE. 1976. The Hydrolysis of Cations. New York, USA: John Wiley and Sons Inc
  • Brown D, Wilson M, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–9
  • Chen C, Mu YS, Wu FC, Zhang R, Su H, Giesy JP. 2015. Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model. Environ Sci Pollut Res Int 22:4297–304
  • Clark RD, Fox PC. 2004. Statistical variation in progressive scrambling. J Comput Aided Mol Des 18:563–76
  • Dasari TP, Pathakoti K, Hwang HM. 2013. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci 25:882–8
  • De M, Ghosh PS, Rotello VM. 2008. Applications of nanoparticles in biology. Adv Mater 20:4225–41
  • Dearden JC, Cronin MT, Kaiser KL. 2009. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–66
  • Epa VC, Burden FR, Tassa C, Weissleder R, Shaw S, Winkler DA. 2012. Modeling biological activities of nanoparticles. Nano Lett 12:5808–12
  • Erdemir A, Li S, Jin Y. 2005. Relation of certain quantum chemical parameters to lubrication behavior of solid oxides. Int J Mol Sci 6:203–18
  • Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P. 2003. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs . Environ Health Perspect 111:1361
  • Gajewicz A, Puzyn T, Rasulev B, Leszczynska D, Leszczynski J. 2011. Metal oxide nanoparticles: size-dependence of quantum-mechanical properties. Nanosci Nanotechnol Asia 1:53–8
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11
  • Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A. 2003. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–53
  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–16
  • Hsiao IL, Hsieh YK, Wang CF, Chen IC, Huang YJ. 2015. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ Sci Technol 49:3813–21
  • Hu X, Cook S, Wang P, Hwang HM. 2009. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–2
  • Kaiser KLE. 1980. Correlation and prediction of metal toxicity to aquatic biota. Can J Fish Aquat Sci 37:211–18
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–32
  • Kubinyi H. 1993. QSAR: Hansch analysis and related approaches. Vieweg Adv Stud Comput Sci 7:115–37
  • Lubick N. 2008. Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617
  • Lubick N. 2008. Risks of nanotechnology remain uncertain. Environ Sci Technol 42:1821–4
  • Markets R. 2015. The Global Market for Metal and Metal Oxide Nanoparticles to 2025. Dublin, Ireland: Future Markets, Inc
  • Mccloskey JT, Newman MC, Clark SB. 1996. Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ Toxicol Chem 15:1730–7
  • Meng H, Xia T, George S, Nel AE. 2009. A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–7
  • Mu YS, Wu FC, Chen C, Liu Y, Zhao X, Haiqing L, et al 2014. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model. Environ Pollut 188:50–5
  • Neal A. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–71
  • Negi H, Rathinavelu Saravanan P, Agarwal T, Ghulam Haider Zaidi M, Goel R. 2013. In vitro assessment of Ag2O nanoparticles toxicity against Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol 59:83–8
  • Nel AE, Parak WJ, Chan WC, Xia T, Hersam MC, Brinker CJ, et al 2015. Where are we heading in nanotechnology environmental health and safety and materials characterization? ACS Nano 9:5627–30
  • Pang CF, Brunelli A, Zhu CH, Hristozov D, Liu Y, Semenzin E, et al 2016. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology 10:129–39
  • Pathakoti K, Huang MJ, Watts JD, He X, Hwang HM. 2014. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. J Photoch Photobio B 130:234–40
  • Pearson RG, Mawby RJ. 1967. The nature of metal-halogen bonds. Phys Rev D 66:55–84
  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–8
  • Sarkar A, Ghosh M, Sil PC. 2014. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol 14:730–43
  • Schrurs F, Lison D. 2012. Focusing the research efforts. Nat Nanotechnol 7:546–8
  • Shaw BJ, Handy RD. 2011. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–97
  • Tamura T. 2010. Introduction of MOPAC simulation for experimental biochemists. Seikagaku 82:863–7
  • Topliss JG, Costello RJ. 1972. Change correlations in structure-activity studies using multiple regression analysis. J Med Chem 15:1066–8
  • Tropsha A, Gramatica P, Gombar VK. 2003. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77
  • Wang B, Zhang Y, Mao Z, Yu D, Gao C. 2014. Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. J Nanosci Nanotechnol 14:5688–96
  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, et al 2016. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–34
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. 2002. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184:172–9
  • Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, et al 2013. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313:15–23
  • Wolterbeek HT, Verburg TG. 2001. Predicting metal toxicity revisited: general properties vs. specific effects. Sci Total Environ 279:87–115
  • Wu FC, Meng W, Zhao X, Li H, Zhang R, Cao Y, et al 2010. China embarking on development of its own national water quality criteria system. Environ Sci Technol 44:7992–3
  • Wu FC, Mu YS, Chang H, Zhao X, Giesy JP, Wu KB. 2013. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environ Sci Technol 47:446–53
  • Yin N, Liu Q, Liu J, He B, Cui L, Li Z, et al 2013. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9:1831–41
  • Zhai HJ, Wang LS. 2007. Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1–10) using photoelectron spectroscopy. J Am Chem Soc 129:3022–6
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–68
  • Zhao Q, Yang K, Li W, Xing B. 2014. Concentration-dependent polyparameter linear free energy relationships to predict organic compound sorption on carbon nanotubes. Sci Rep 4:1465–76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.