855
Views
74
CrossRef citations to date
0
Altmetric
Original Article

Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays

, , , , , , , , , , , , & show all
Pages 1373-1384 | Received 26 Apr 2016, Accepted 14 Jul 2016, Published online: 10 Aug 2016

References

  • Angel BM, Batley GE, Jarolimek CV, Rogers NJ. 2013. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–65
  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–90
  • Avalos A, Haza AI, Mateo D, Morales P. 2014. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol 34:413–23
  • Avalos A, Haza AI, Mateo D, Morales P. 2016. Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. Int Wound J 13:101–9
  • Bartlomiejczyk T, Lankoff A, Kruszewski M, Szumiel I. 2013. Silver nanoparticles - allies or adversaries? Ann Agric Environ Med 20:48–54
  • Bohmert L, Niemann B, Thunemann AF, Lampen A. 2012. Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2. Arch Toxicol 86:1107–15
  • Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, et al. 2016. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci 150:131–60
  • Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK. 2015. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30:577–91
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–19
  • Chaloupka K, Malam Y, Seifalian AM. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–8
  • Chen T, Harrington-Brock K, Moore MM. 2002a. Mutant frequencies and loss of heterozygosity induced by N-ethyl-N-nitrosourea in the Thymidine kinase gene of L5178Y/TK(+/-)-3.7.2C mouse lymphoma cells. Mutagenesis 17:105–9
  • Chen T, Harrington-Brock K, Moore MM. 2002b. Mutant frequency and mutational spectra in the Tk and Hprt genes of N-ethyl-N-nitrosourea-treated mouse lymphoma cells. Environmental and Molecular Mutagenesis 39:296–305
  • Chen T, Moore MM. 2004. Screening for chemical mutagens using the mouse lymphoma assay. In: Yan Z, Caldwell GW, eds. Optimization in Drug Discovery: In-vitro Methods. Totowa, NJ: Humana Press, 337–52
  • Chen X, Schluesener HJ. 2008. Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12
  • Cumberland SA, Lead JR. 2009. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr a 1216:9099–105
  • De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, et al. 2015. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag + ion release in the cytosol. Nanomedicine 11:731–9
  • FDA. 2007a. Nanotechnology task force report 2007. USFDA. [Online] Available at: http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/Nanotechnology/ucm110856.pdf. Accessed on 7 July 2016
  • FDA. 2007b. Toxicological principles for the safety assessment of food ingredients. Redbook 2000: IV.C.1 Short-Term Tests for Genetic Toxicity. [Online] http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/IngredientsAdditivesGRASPackaging/ucm078321.htm. Accessed 7 July 2016
  • Flower NA, Brabu B, Revathy M, Gopalakrishnan C, Raja SV, Murugan SS, Kumaravel TS. 2012. Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res 742:61–5
  • Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C. 2012. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–57
  • Garcia-Reyero N, Kennedy AJ, Escalon BL, Habib T, Laird JG, Rawat A, et al. 2014. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol 48:4546–55
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11
  • Guo X, Chen T. 2015. Progress in genotoxicity evaluation of engineered nanomaterials. In: Larramendy SSaML, ed. Nanomaterials - Toxicity and Risk Assessment. Croatia: In-Tech, 141–60
  • Guo X, Mittelstaedt RA, Guo L, Shaddock JG, Heflich RH, Bigger AH, et al. 2013. Nitroxide TEMPO: a genotoxic and oxidative stress inducer in cultured cells. Toxicol In Vitro 27:1496–502
  • Guo X, Verkler TL, Chen Y, Richter PA, Polzin GM, Moore MM, Mei N. 2011. Mutagenicity of 11 cigarette smoke condensates in two versions of the mouse lymphoma assay. Mutagenesis 26:273–81
  • Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, et al. 2011. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33
  • Harrington-Brock K, Collard DD, Chen T. 2003. Bromate induces loss of heterozygosity in the Thymidine kinase gene of L5178Y/Tk+/−-3.7.2C mouse lymphoma cells. Mutat Res Genet Toxicol Environ Mutagenesis 537:21–8
  • Hernandez-Sierra JF, Galicia-Cruz O, Angelica SA, Ruiz F, Pierdant-Perez M, Pozos-Guillen AJ. 2011. In vitro cytotoxicity of silver nanoparticles on human periodontal fibroblasts. J Clin Pediatr Dent 36:37–41
  • Honma M, Hayashi M, Sofuni T. 1997. Cytotoxic and mutagenic responses to X-rays and chemical mutagens in normal and p53-mutated human lymphoblastoid cells. Mutat Res 374:89–98
  • Huk A, Izak-Nau E, El Yamani N, Uggerud H, Vadset M, Zasonska B, et al. 2015. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating. Part Fibre Toxicol 12:25
  • ICH. 2012. Guidance for industry S2(R1) genotoxicity testing and data interpretation for pharmaceuticals intended for human use. [Online] Available at: http://www.fda.gov/downloads/Drugs/Guidances/ucm074931.pdf. Accessed 7 July 2016
  • Jiang X, Miclaus T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, et al. 2015. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–9
  • Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, et al. 2010. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44:7321–8
  • Kim S, Ryu DY. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89
  • Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. 2012. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100:1033–43
  • Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. 2009. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations – many questions, some answers. Mutat Res 681:241–58
  • Lane DP. 1992. Cancer. p53, guardian of the genome. Nature 358:15–16
  • Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, et al. 2014. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 8:36–45
  • Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. 2012. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res 745:4–10
  • Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, Chen T. 2016. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol. [Epub ahead of print]. doi: 10.1007/s00204-016-1730-y
  • Li YZ, Lu DY, Tan WQ, Wang JX, Li PF. 2008. p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol 28:564–74
  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, et al. 2010. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–30
  • Maenosono S, Suzuki T, Saita S. 2007. Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32:575–9
  • McShan D, Ray PC, Yu H. 2014. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–27
  • Mei N, Guo X, Moore MM. 2014. Methods for using the mouse lymphoma assay to screen for chemical mutagenicity and photo-mutagenicity. In: Caldwell GW, Yan Z, eds. Optimization in Drug Discovery: In-vitro Methods. Waltham, MA, USA: Academic Press (Elsevier), 561–2
  • Mei N, Hu J, Xia Q, Fu PP, Moore MM, Chen T. 2010. Cytotoxicity and mutagenicity of retinol with ultraviolet A irradiation in mouse lymphoma cells. Toxicol In Vitro 24:439–44
  • Mei N, Xia Q, Chen L, Moore MM, Chen T, Fu PP. 2006. Photomutagenicity of anhydroretinol and 5,6-epoxyretinyl palmitate in mouse lymphoma cells. Chem Res Toxicol 19:1435–40
  • Mei N, Xia Q, Chen L, Moore MM, Fu PP, Chen T. 2005. Photomutagenicity of retinyl palmitate by ultraviolet A irradiation in mouse lymphoma cells. Toxicol Sci 88:142–9
  • Mei N, Zhang Y, Chen Y, Guo X, Ding W, Ali SF, et al. 2012. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen 53:409–19
  • Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn HG, Erdmann H. 2014. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28:1280–9
  • Moore MM, Honma M, Clements J, Bolcsfoldi G, Burlinson B, Cifone M, et al. 2006. Mouse lymphoma thymidine kinase gene mutation assay: follow-up meeting of the International Workshop on Genotoxicity Testing – Aberdeen, Scotland, 2003 – Assay acceptance criteria, positive controls, and data evaluation. Environ Mol Mutagen 47:1–5
  • Moore MM, Honma M, Clements J, Harrington-Brock K, Awogi T, Bolcsfoldi G, Jr et al. 2002. Mouse lymphoma thymidine kinase gene mutation assay: follow-up International Workshop on Genotoxicity Test Procedures, New Orleans, Louisiana, April 2000. Environ Mol Mutagen 40:292–9
  • Mortelmans K, Zeiger E. 2000. The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60
  • Moussa SH, Tayel AA, Alsohim AS, Abdallah RR. 2013. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78:M1589–94
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7
  • Nowack B, Krug HF, Height M. 2011. 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–83
  • OECD. 1997. Bacterial reverse mutation test. OECD . [Online] Available at: http://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf. Accessed 7 July 2016
  • OECD. 2014a. In vitro mammalian cell gene mutation assays using the thymidine kinase gene. OECD guideline for the testing of chemicals No. 490. [Online] Available at: http://www.oecd-ilibrary.org/docserver/download/9715191e.pdf?expires=1444410954&id=id&accname=guest&checksum=5A23AB167E8423963D1A60A60AC918B5. Accessed 7 July 2016
  • OECD. 2014b. In vitro mammalian cell micronucleus test, OECD guideline for testing of chemicals, No. 487. [Online] Available at: http://www.oecd-ilibrary.org/docserver/download/9714561e.pdf?expires=1417033814&id=id&accname=guest&checksum=A77BB1B023EACFEF8C36FD865B6981D3. Accessed 7 July 2016
  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–7
  • Prasad RY, McGee JK, Killius MG, Suarez DA, Blackman CF, DeMarini DM, Simmons SO. 2013. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol in Vitro 27:2013–21
  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–914
  • Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, Pratsinis SE. 2011. Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170:547–54
  • Storer RD, Kraynak AR, McKelvey TW, Elia MC, Goodrow TL, DeLuca JG. 1997. The mouse lymphoma L5178Y Tk+/− cell line is heterozygous for a codon 170 mutation in the p53 tumor suppressor gene. Mutat Res 373:157–65
  • Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ 2012. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–35
  • Tejamaya M, Romer I, Merrifield RC, Lead JR. 2012. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–17
  • Vecchio G, Fenech M, Pompa PP, Voelcker NH. 2014. Lab-on-a-chip-based high-throughput screening of the genotoxicity of engineered nanomaterials. Small 10:2721–34
  • Wang J, Sawyer JR, Chen L, Chen T, Honma M, Mei N, Moore MM. 2009. The mouse lymphoma assay detects recombination, deletion, and aneuploidy. Toxicol Sci 109:96–105
  • Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, et al. 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385–98
  • Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, et al. 2012. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 32:934–43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.