321
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Frozen dispersions of nanomaterials are a useful operational procedure in nanotoxicology

, , , , &
Pages 31-40 | Received 10 Nov 2015, Accepted 20 Oct 2016, Published online: 01 Dec 2016

References

  • Annangi B, Bach J, Vales G, Rubio L, Marcos R, Hernández A. 2015. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 9:138–47.
  • Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–54.
  • Bruinink A, Wang J, Wick P. 2015. Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–75.
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. 2006. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–81.
  • Chan J, Ying T, Guang YF, Lin LX, Kai T, Fang ZY, et al. 2011. In vitro toxicity evaluation of 25-nm anatase TiO2 nanoparticles in immortalized keratinocyte cells. Biol Trace Elem Res 144:183–96.
  • Chen N, He Y, Su Y, Li X, Huang Q, Wang H, et al. 2012. The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–44.
  • Cho EC, Zhang Q, Xia Y. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–91.
  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, et al. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118:1699–706.
  • Cohen J, DeLoid G, Pyrgiotakis G, Demokritou P. 2013. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7:417–31.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–56.
  • Epstein HA. 2011. Nanotechnology in cosmetic products. Skinmed 9:109–10.
  • Gebel T, Foth H, Damm G, Freyberger A, Kramer PJ, Lilienblum W, et al. 2014. Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 88:2191–211.
  • Jiang J, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration sate of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89.
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, et al. 2013. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43:1–20.
  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V. 2012. An in vitro liver model – assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol 9:28.
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J. 2012. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86:1123–36.
  • Liu D, Gu N. 2009. Nanomaterials for fresh-keeping and sterilization in food preservation. Recent Pat Food Nutr Agric 1:149–54.
  • Matusiewicz H. 2014. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles-a systematic analytical review. Acta Biomater 10:2379–403.
  • McGuinnes C, Duffin R, Brown SL, Mills N, Megson IL, Macnee W, et al. 2011. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 119:359–68.
  • McShan D, Ray PC, Yu H. 2014. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–27.
  • Monteiro-Riviere NA, Inman AO, Zhang LW. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–3.
  • Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. 2013. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol 43:96–118.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–53.
  • Nanogenotox. 2011. http://www.nanogenotox.eu/files/PDF/Deliverables/nanogenotox%20deliverable%203_wp4_%20dispersion%20protocol.pdf.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39.
  • Oberdorster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25.
  • Pal AK, Bello D, Cohen J, Demokritou P. 2015. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 9:871–985.
  • Park M, Lankveld D, Van Loveren H, Jong W. 2009. The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomedicine (Lond) 4:669–85.
  • Park H, Grassian VH. 2010. Commercially manufactured engineered nanomaterials for environmental and health studies: important insights provided by independent characterization. Environ Toxicol Chem 29:715–21.
  • Petrochenko PE, Zhang Q, Bayati MR, Skoog SA, Scott Phillips K, Kumar G, et al. 2014. Cytotoxic evaluation of nanostructured zinc oxide (ZnO) thin films and leachates. Toxicol in Vitro 28:1144–52.
  • Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L′Azou B. 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10.
  • Roco MC, Hersam MC, Mirkin CA. 2011. Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanoparticle Res 13:897–919.
  • Roy R, Kumar S, Tripathi A, Das M, Dwivedi PD. 2014. Interactive threats of nanoparticles to the biological system. Immunol Lett 158:79–87.
  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, et al. 2014. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–61.
  • Schmid K, Riediker M. 2008. Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–60.
  • Soto-Alvaredo J, Blanco E, Bettmer J, Hevia D, Sainz RM, López Cháves C, et al. 2014. Evaluation of the biological effect of Ti generated debris from metal implants: ions and nanoparticles. Metallomics 6:1702–8.
  • Steigerwald ML, Brus LE. 1990. Semiconductor crystallites: a class of large molecules. ACC Chem Res 23:183–8.
  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, et al. 2010. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterization. Sci Total Environ 408:1745–54.
  • Suzuki H, Toyooka T, Ibuki Y. 2007. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–24.
  • Vales G, Rubio L, Marcos R. 2015. Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells. Nanotoxicology 9:568–78.
  • Wang Y. 1991. Nonlinear optical properties of nanometer-sized semiconductor clusters. ACC Chem Res 24:133–9.
  • Weller W. 1993. Quantized semiconductor particles: a novel state of matter for materials science. Adv Mater 5:88–95.
  • Xia B, Chen B, Sun X, Qu K, Ma F, Du M. 2015. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–33.
  • Xu M, Fujita D, Kajiwara S, Minowa T, Li X, Takemura T, et al. 2010. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials 31:8022–31.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78.
  • Yen SJ, Hsu WL, Chen YC, Su HC, Chang YC, Chen H, et al. 2011. The enhancement of neural growth by amino-functionalization on carbon nanotubes as a neural electrode. Biosens Bioelectron 26:4124–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.