624
Views
47
CrossRef citations to date
0
Altmetric
Original Article

Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers

, , , , , , , , , , , , , & show all
Pages 52-63 | Received 12 Aug 2016, Accepted 09 Nov 2016, Published online: 09 Dec 2016

References

  • Anjilvel S, Asgharian BA. 1995. Multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 28:41–50
  • Chang XH, Zhang Y, Tang M, Wang B. 2013. Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies. Nanoscale Res Lett 8:1–10
  • Czerska M, Zieliński M, Gromadzińska J. 2016. Isoprostanes: a novel major group of oxidative stress markers. Int J Occup Med Environ Health 29:179–90
  • Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D, et al. 2003. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med 168:1500–5
  • Fuchs P, Loeseken C, Schubert JK, Miekisch W. 2010. Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 126:2663–70
  • Gong JC, Zhu T, Kipen H, Wang GF, Hu M, Ohman-Strickland P, et al. 2013. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J Expo Sci Environ Epidemiol 23:322–7
  • Horvath I, Hunt J, Barnes PJ, Alving K, Antczak A, Balint B, et al. 2005. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Resp J 26:523–48
  • Hsieh SF, Bello D, Schmidt DF, Pal AK, Stella A, Isaacs JA, et al. 2013. Mapping the biological oxidative damage of engineered nanomaterials. Small 9:1853–65
  • Huang J, Kumar S, Hanna GB. 2014. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS). J Breath Res 8:037104
  • IARC: Carbon Black, Titanium Dioxide, and Talc. 2010. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization, Vol. 93 Lyon, France: IARC
  • Jareno J, Munoz MA, Maldonado JA, Carrillo B, Trigo GR, Civera C, et al. 2012. Volatile Organic Compounds (VOC) in exhaled breath in patients with lung cancer (LC). Lung Cancer 77:S31–2
  • Khatri M, Bello D, Pal AK, Cohen JM, Woskie S, Gassert T, et al. 2013a. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fiber Toxicol 10:42
  • Khatri M, Bello D, Gaines P, Martin J, Pal AK, Gore R, et al. 2013b. Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology 7:1014–27
  • Kreyling WG, Semmler-Behnke M, Takenaka S, Möller W. 2013. Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Acc Chem Res 46:714–22
  • Kwon S, Yang YS, Yang HS, Lee J, Kang MS, Lee BS, et al. 2012. Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats. Toxicol Res 28:217–24
  • Lazareva A, Keller AA. 2014. Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustainable Chem Eng 2:1656–65
  • Lee JF, Tung SP, Wang D, Yeh DY, Fong Y, Young YC, et al. 2014. Lipoxygenase pathway mediates increases of airway resistance and lung inflation induced by exposure to nanotitanium dioxide in rats. Oxid Med Cell Longev 2014:485604
  • Lee JS, Choi YC, Shin JH, Lee JH, Lee Y, Park SY, et al. 2014. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology 14:1–10
  • Li B, Ze Y, Sun Q, Zhang T, Sang X, Cui Y, et al. 2013. Molecular mechanisms of nanosized titanium dioxide-induced pulmonary injury in mice. PLoS One 8:e55563
  • Liao HY, Chung YT, Lai CH, Wang SL, Chiang HC, Li LA, et al. 2014. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology 8(Suppl 1):100–10
  • Liou SH, Twou TC, Wang SL, Li LA, Chiang HC, Li WF, et al. 2012. Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart Res 14:878–92
  • Liou SH, Tsai CS, Pelclova D, Schubauer-Berigan MK, Schulte PA. 2015. Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res 17:413
  • Liou SH, Chen YC, Liao HY, Wang CJ, Chen JS, Lee HL. 2016. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers. Biomarkers Mar 24:1–7
  • Löndahl J, Möller W, Pagels JH, Kreyling WG, Swietlicki E, Schmid O. 2014. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv 27:229–54
  • Martin J, Bello D, Bunker K, Shafer M, Christiani D, Woskie S, et al. 2015. Occupational exposure to nanoparticles at commercial photocopy centers. J Hazard Mater 298:351–60
  • Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, et al. 2010. Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46
  • Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, et al. 2008. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med 177:426–32
  • NIOSH. 2011. Current intelligence bulletin 63, occupational exposure to titanium dioxide, department of health and human services, centers for disease control and prevention, national institute for occupational safety and health, 114 pp. DHHS (NIOSH) Publication No. 2011–160 [Online]. Available at: http://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf
  • Noël A, Charbonneau M, Cloutier Y, Tardif R, Truchon G. 2013. Rat pulmonary responses to inhaled nano-TiO2: effect of primary particle size and agglomeration state. Part Fibre Toxicol 10:48
  • Pal AK, Hsieh S-F, Khatri M, Isaacs JA, Demokritou P, Gaines P, et al. 2014. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH. J Nanopart Res 8:9003–15
  • Pelclova D, Fenclova Z, Kacer P, Navratil T, Kuzma M, Lebedova J, et al. 2007. 8-Isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind Health 45:766–74
  • Pelclova D, Fenclova Z, Kacer P, Kuzma M, Navratil T, Lebedova J. 2008. Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind Health 46:484–9
  • Pelclova D, Barosova H, Kukutschova J, Zdimal V, Navratil T, Fenclova Z, et al. 2015. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: a cross-sectional study. J Breath Res 9:036008
  • Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Syslova K, Navratil T, et al. 2016a. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res 10:016004
  • Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, et al. 2016b. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup Environ Med 73:110–18
  • Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, et al. 2016c. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J Breath Res 10:036004
  • Pelclova D, Kacer P, Zdimal V, Komarc M, Fenclova Z, Vlckova S, et al. 2016. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev Environ Health [Epub ahead of print]. doi: 10.1515/reveh-2016-0030
  • Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, et al. 2016. Effects of laser printer-emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in vitro analysis in human small airway epithelial cells, macrophages, and lymphoblasts. Environ Health Perspect 124:210–19
  • Rappaport SM, Kupper LL, et al. 2008. Air contaminants. In: Rappaport SM, eds. Quantitative exposure assessment. El Cerrito, CA: Stephen Rappaport 3–5
  • Roberts LJ, Oates JA, Linton MF, Fazio S, Meador BP, Gross MD, et al. 2007. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic Biol Med 43:1388–93
  • Shi HB, Magaye R, Castranova V, Zhao JS. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15
  • Silva RM, TeeSy C, Franzi L, Weir A, Westerhoff P, Evans JE, et al. 2013. Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention. J Toxicol Environ Health Part A 76:953–72
  • Skocaj M, Filipic M, Petkovic J, Novak S. 2011. Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45:227–47
  • Syslova K, Kacer P, Kuzma M, Klusackova P, Fenclova Z, Lebedova J, et al. 2008. Determination of 8-iso-prostaglandin F(2alpha) in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 867:8–14
  • Syslova K, Kacer P, Kuzma M, Najmanova V, Fenclova Z, Vlckova S, et al. 2009. Rapid and easy method for monitoring oxidative stress markers in body fluids of patients with asbestos or silica-induced lung diseases. J Chromatogr B Analyt Technol Biomed Life Sci 877:2477–86
  • Syslova K, Kacer P, Kuzma M, Pankracova A, Fenclova Z, Vlckova S, et al. 2010. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J Breath Res 4:017104
  • Syslova K, Bohmova A, Mikoska M, Kuzma M, Pelclova D, Kacer P. 2014. Multimarker screening of oxidative stress in aging. Oxid Med Cell Longev 2014:562860
  • Toyokuni S. 2008. Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life 60:441–7
  • Warheit DB. 2013. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles. Toxicol Lett 220:193–204
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–50
  • Zhang R, Dai Y, Zhang X, Niu Y, Meng T, Li Y, et al. 2014. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part Fibre Toxicol 11:73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.