3,208
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Differential cytotoxic and inflammatory potency of amorphous silicon dioxide nanoparticles of similar size in multiple cell lines

, , , , , , , , , & show all
Pages 223-235 | Received 15 Sep 2016, Accepted 20 Jan 2017, Published online: 20 Feb 2017

References

  • Brandenberger C, Rowley NL, Jackson-Humbles DN, Zhang Q, Bramble LA, Lewandowski RP, et al. 2013. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part Fibre Toxicol 10:26.
  • Breznan D, Karthikeyan S, Phaneuf M, Kumarathasan P, Cakmak S, Denison MS, et al. 2016. Development of an integrated approach for comparison of in vitro and in vivo responses to particulate matter. Part Fibre Toxicol 13:41.
  • Byrne JD, Baugh JA. 2008. The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med 11:43–50.
  • Chen X, Zhouhua W, Jie Z, Xinlu F, Jinqiang L, Yuwen Q, et al. 2014. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int J Nanomedicine 10:1–22.
  • Choi M, Cho WS, Han BS, Cho M, Kim SY, Yi JY, et al. 2008. Transient pulmonary fibrogenic effect induced by intratracheal instillation of ultrafine amorphous silica in A/J mice. Toxicol Lett 182:97–101.
  • Christen V, Camenzind M, Fent K. 2014. Silica nanoparticles induce endoplasmic reticulum stress response, oxidative stress and activate the mitogen-activated protein kinase (MAPK) signaling pathway. Toxicol Rep 1:1143–51.
  • Cohen J, Deloid G, Pyrgiotakis G, Demokritou P. 2013. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7:417–31.
  • Cohen JM, Teeguarden JG, Demokritou P. 2014. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 11:20.
  • Comerford I, McColl SR. 2011. Mini-review series: focus on chemokines. Immunol Cell Biol 89:183–4.
  • Costantini LM, Gilberti RM, Knecht DA. 2011. The phagocytosis and toxicity of amorphous silica. PLoS One 6:e14647.
  • Cuneo AA, Autieri MV. 2009. Expression and function of anti-inflammatory interleukins: the other side of the vascular response to injury. Curr Vasc Pharmacol 7:267–76.
  • Das DD, Harlick PJE, Sayari A. 2007. Applications of pore-expanded MCM-41 silica: 4. synthesis of a highly active base catalyst. Catal Comm 8:829–33.
  • Das DD, Yang Y, O’Brien JS, Breznan D, Nimesh S, Bernatchez S, et al. 2014. Synthesis and physicochemical characterization of mesoporous SiO2 nanoparticles. J Nanomater 12:e176015.
  • Davis GS. 1986. The pathogenesis of silicosis. State of the art. Chest 89:166S–9S.
  • DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, et al. 2014. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514.
  • Ding M, Chen F, Shi X, Yucesoy B, Mossman B, Vallyathan V. 2002. Diseases caused by silica: mechanisms of injury and disease development. Int Immunopharmacol 2:173–82.
  • Dong Q, Louahed J, Vink A, Sullivan CD, Messler CJ, Zhou Y, et al. 1999. IL-9 induces chemokine expression in lung epithelial cells and baseline airway eosinophilia in transgenic mice. Eur J Immunol 29:2130–9.
  • Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS. 2003. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15:3198–201.
  • Fruijtier-Pölloth C. 2012. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 294:61–79.
  • Golbamaki N, Rasulev B, Cassano A, Marchese, Robinson RL, Benfenati E, et al. 2015. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–98.
  • Hnizdo E, Sluis-Cremer GK. 1993. Risk of silicosis in a cohort of white South African gold miners. Am J Ind Med 24:447–57.
  • Hunter RJ. 2006. Electrokinetics of particles. In: Somasundaram P, ed. Encyclopedia of surface and colloid science. Boca Raton: CRC Press, 2220–32.
  • Hurley BP, Pirzai W, Mumy KL, Gronert K, McCormick BA. 2011. Selective eicosanoid-generating capacity of cytoplasmic phospholipase A2 in Pseudomonas aeruginosa-infected epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L286–94.
  • Jacobs R, van der Voet H, Ter Braak CJ. 2015. Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food. J Nanopart Res 17:251.
  • Johnston CJ, Driscoll KE, Finkelstein JN, Baggs R, O’Reilly MA, Carter J, et al. 2000. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 56:405–13.
  • Kasper JY, Feiden L, Hermanns MI, Bantz C, Maskos M, Unger RE, et al. 2015. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air-blood barrier model. Beilstein J Nanotechnol 6:517–28.
  • Kim BY, Rutka JT, Chan WC. 2010. Nanomedicine. N Engl J Med 363:2434–43.
  • Kuhn DA, Vanhecke D, Michen B, Blank F, Gehr P, Petri-Fink A, et al. 2014. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 5:1625–36.
  • Kumarathasan P, Breznan D, Das D, Salam MA, Siddiqui Y, MacKinnon-Roy C, et al. 2015. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells. Nanotoxicology 9:148–61.
  • Kwon JY, Koedrith P, Seo YR. 2014. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. Int J Nanomedicine 9:271–86.
  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, et al. 2009. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14. 30
  • Lee KP, Kelly DP. 1992. The pulmonary response and clearance of Ludox colloidal silica after a 4-week inhalation exposure in rats. Fundam Appl Toxicol 19:399–410.
  • Liu R, Liu HH, Ji Z, Chang CH, Xia T, Nel AE, et al. 2015. Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model. ACS Nano 9:9303–13.
  • Lloyd CM, Gutierrez-Ramos JC. 2003. Regulation of cellular traffic in the asthmatic lung. In: Lambrecht BN, Hoogsteden HC, Diamant Z, eds. The immunological basis of asthma. Boca Raton: CRC Press, 409–38.
  • McLane MP, Haczku A, van de Rijn M, Weiss C, Ferrante V, MacDonald D, et al. 1998. Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyperresponsiveness in transgenic mice. Am J Respir Cell Mol Biol 19:713–20.
  • Metcalf D. 1985. The granulocyte-macrophage colony-stimulating factors. Science 229:16–22.
  • Michel K, Scheel J, Karsten S, Stelter N, Wind T. 2013. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation. Nanotoxicology 7:974–88.
  • Miyata R, van Eeden SF. 2011. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol 257:209–26.
  • Murashov V, Harper M, Demchuk E. 2006. Impact of silanol surface density on the toxicity of silica aerosols measured by erythrocyte haemolysis. J Occup Environ Hyg 3:718–23.
  • Nadeau D, Vincent R, Kumarathasan P, Brook J, Dufresne A. 1996. Cytotoxicity of ambient air particles to rat lung macrophages: Comparison of cellular and functional assays. Toxicol in Vitro 10:161–72.
  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39.
  • Nieboer E, Richardson DHS. 1980. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut Series B, Chem and Phys 1:3–26.
  • Opal SM, DePalo VA. 2000. Anti-inflammatory cytokines. Chest 117:1162–72.
  • Pal AK, Bello D, Cohen J, Demokritou P. 2015. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 9:871–85.
  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. 2009. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–6.
  • Pavan C, Tomatis M, Ghiazza M, Rabolli V, Bolis V, Lison D, Fubini B. 2013. In search of the chemical basis of the hemolytic potential of silicas. Chem Res Toxicol 26:1188–98.
  • Pavan C, Rabolli V, Tomatis M, Fubini B, Lison D. 2014. Why does the hemolytic activity of silica predict its pro-inflammatory activity?. Part Fibre Toxicol 11:76.
  • Pétrilli V, Dostert C, Muruve DA, Tschopp J. 2007. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–22.
  • Pope CA 3rd, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, et al. 2009. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120:941–8.
  • Rabolli V, Thomassen LC, Princen C, Napierska D, Gonzalez L, Kirsch-Volders M, et al. 2010. Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4:307–18.
  • Rabolli V, Thomassen LC, Uwambayinema F, Martens JA, Lison D. 2011. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol Lett 206:197–203.
  • Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, et al. 2014. The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol 11:69.
  • Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. 2006. GenePattern 2.0. Nat Genet 38:500–1.
  • Riley MR, Boesewetter DE, Turner RA, Kim AM, Collier JM, Hamilton A. 2005. Comparison of the sensitivity of three lung derived cell lines to metals from combustion derived particulate matter. Toxicol in Vitro 19:411–19.
  • Saldanha AJ. 2004. Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–8.
  • Schwende H, Fitzke E, Ambs P, Dieter P. 1996. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 59:555–61.
  • Shi J, Hedberg Y, Lundin M, Odnevall Wallinder I, Karlsson HL, Möller L. 2012. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona. Acta Biomater 8:3478–90.
  • Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, et al. 1990. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–23.
  • Sun B, Pokhrel S, Dunphy DR, Zhang H, Ji Z, Wang X, et al. 2015. Reduction of acute inflammatory effects of fumed silica nanoparticles in the lung by adjusting silanol display through calcination and metal doping. ACS Nano 9:9357–72.
  • Thibodeau M, Giardina C, Hubbard AK. 2003. Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol Sci 76:91–101.
  • Vincent R, Goegan P, Johnson G, Brook JR, Kumarathasan P, Bouthillier L, et al. 1997. Regulation of promoter-CAT stress genes in HepG2 cells by suspensions of particles from ambient air. Fundam Appl Toxicol 39:18–32.
  • Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, et al. 2009. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553–69.
  • Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D, et al. 2012. Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134:15790–804.