373
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells

, , , , , , , , , & show all
Pages 613-624 | Received 29 Mar 2017, Accepted 15 May 2017, Published online: 02 Jun 2017

References

  • Alam A, Puri N, Saxena RK. 2016. Uptake of poly-dispersed single-walled carbon nanotubes and decline of functions in mouse NK cells undergoing activation. J Immunotox 13:758–65.
  • Allegri M, Perivoliotisb DK, Bianchic MG, Chiua M, Pagliaroa A, Koklioti MA, et al. 2016. Toxicity determinants of multi-walled carbon nanotubes: the relationship between functionalization and agglomeration. Toxicol Rep 3:230–43.
  • Becker H, Herzberg F, Schulte A, Kolossa-Gehring M. 2011. The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Int J Hyg Environ Health 214:231–8.
  • Bishop LM, Orandle M, Cena L, Kodali V, Dahm M, Erdely, et al. 2016. The occupational life cycle of MWCNT: toxicity evaluation from as-produced to post-production modifications and composites. Toxicologist 3488:584.
  • Chang YH, Olukan T, Lai CY, Marbou K, Apostoleris HN, Ghaferi AA, et al. 2016. Divergent surface properties of multidimensional sp (2) carbon allotropes: the effect of aging phenomena. Nanotechnology 27:295701.
  • Chidawanyika W, Nyokong T. 2010. Characterization of amine-functionalized single walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon 48:2831–8.
  • Coccini T, Manzo L, Roda E. 2013. Safety evaluation of engineered nanomaterials for health risk assessment: an experimental tiered testing approach using pristine and functionalized carbon nanotubes. ISRN Toxicol 2013:825427.
  • Creton S, Aardema MJ, Carmichael PL, Harvey JS, Martin FL, et al. 2012. Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs. Mutagenesis 27:93–101.
  • Dahm MM, Evans DE, Schubauer-Berigan MK, Newbold RF, O'Donovan MR, Pant K, et al. 2012. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. Ann Occup Hyg 57:328–44.
  • Dandley EC, Taylor AJ, Duke KS, Ihrie MD, Shipkowski KA, Parsons GN, et al. 2016. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure. Part Fibre Toxicol 13:29.
  • Datsyuk V, Kalva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. 2008. Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–40.
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. 2013. Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 65:2078–86.
  • Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC. 2005. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J Appl Phys 98:074308.
  • Gengenbach TR, Chatelier RC, Griesser HJ. 1996. Characterization of the ageing of plasma-deposited polymer films: global analysis of X-ray photoelectron spectroscopy data. Surf Interface Anal 24:271–81.
  • Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. 2014. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 15:1427–8.
  • Hamilton RF, Wu Z, Mitra S, Shaw PK, Holian A. 2013a. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxciol 10:57.
  • Hamilton RF, Xiang CC, Li M, Ka I, Yang F, Ma D, et al. 2013b. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol 25:199–210.
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74.
  • Hedmer M, Isaxon C, Nilsson PT, Ludvigsson L, Messing ME, Genberg J, et al. 2014. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann Occup Hyg 58:355–79.
  • International Agency for Research on Cancer (IARC). 2010. Carbon Black. IARC Monographs 93:1–149.
  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U. 2015. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56:183–203.
  • Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, et al. 2011. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24:2028–39.
  • Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, et al. 2016. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol 13:53.
  • Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. 2016. Free-radical-induced grafting from plasma polymer surfaces. Chem Rev 116:3975–4005.
  • Kim J. 2011. Functionalization of Carbon Nanotubes. Carbon Nanotubes for Polymer Reinforcement. Boca Raton, FL: CRC Press.
  • Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, et al. 2011. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252:1–10.
  • Kolling A, Ernst H, Rittinghausen S, Heinrich U. 2011. Relationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay. Inhal Toxicol 23:544–54.
  • Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, et al. 2017. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 47:1–58.
  • Li M, Cushing SK, Zhou JX, Guo SW, Wu NQ. 2012. Fingerprinting photoluminescence of functional groups in graphene oxide. J Mater Chem 22:23374–9.
  • Li Q, Shang J, Zhu T. 2013. Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles. Atmos Environ 81:68–75.
  • Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, et al. 2013. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7:2352–68.
  • Liu Y, Liggio J, Li SM, Breznan D, Vincent R, Thomson EM, et al. 2015. Chemical and toxicological evolution of carbon nanotubes during atmospherically relevant aging processes. Environ Sci Technol 49:2804–14.
  • Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–9.
  • Mackevica A, Hansen SF. 2016. Release of nanomaterials from solid nanocomposites and exposure assessment – a foreward-looking review. Nanotoxicology 10:641–53.
  • Mishra A, Rojanasakul Y, Chen BT, Castranova V, Mercer RR, Wang L. 2012. Assessment of pulmonary fibrogenic potential of multiwalled carbon nanotubes in human lung cells. J Nanomater 2012:930931.
  • Mitrano DM, Motellier S, Clavagueara S, Nowack B. 2015. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–47.
  • Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Frohlich E. 2015. Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity. Toxicol Sci 144:114–27.
  • Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M. 2010. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon 48:1369–79.
  • NCL NIEHS. 2012. Characterization Data for Multi-Walled Carbon Nanotubes. NCL-NIEHS201211A. Frederick, MD: Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer Research.
  • OECD 2007. Detailed Review Paper on Cell Transformation Assays for Detection of Chemical Carcinogens. Series on Testing and Assessment, No. 31. OECD, Paris, France: OECD Environment, Health and Safety Publications, 1–164.
  • Patlolla AK, Hussain SM, Schlager JJ, Patolla S, Tchounwou PB. 2010. Comparative study of the clastogenicity of functionalized and non-functionalized multi-walled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25:608–21.
  • Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, O'Carroll DM, et al. 2011. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–56.
  • Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. 2013. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 7:1179–94.
  • Poulsen SS, Jackson P, Kling K, Knudsen KB, Skaug V, Kyjovska ZO, et al. 2016. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology 10:1263–75.
  • Roberts JR, Mercer RR, Stefaniak AB, Seehra MS, Geddam UK, Chaudhuri IS, et al. 2016. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family. Part Fibre Toxicol 13:34.
  • Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L. 2011. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: Morphohistochemical evaluations. Histol Histopath 26:357–67.
  • Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, et al. 2014. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 8:317–27.
  • Sargent LM, Porter DW, Staska LM, Hubbs A, Lowry D, Battelli L, et al. 2014. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11:3.
  • Saxena RK, Williams W, Mcgee JK, Daniels MJ, Boykin E, Gilmour I. 2007. Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 4:291–300.
  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, et al. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–42.
  • Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, et al. 2014. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol 11:6.
  • Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-Berry D, Pirela SV, et al. 2017. Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact 6:39–54.
  • Tsuruoka S, Matsumoto H, Koyama K, Akiba E, Yanagisawa T, Cassee FR, et al. 2015a. Radical scavenging reaction kinetics with multiwalled carbon nanotubes. Carbon NY 83:232–9.
  • Tsuruoka S, Matsumoto H, Castranova V, Porter DW, Yanagisawa T, Saito N, et al. 2015b. Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: classification by physical and chemical structures. Carbon NY 95:302–8.
  • Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Buresti G, et al. 2012. Comparative cyto-genotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells. Toxicol In Vitro 26:831–40.
  • Ursini CL, Maiello R, Ciervo A, Fresegna AM, Buresti G, Casciardi S, et al. 2016. Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and –OH and –COOH functionalized multi-wall carbon nanotubes. J Appl Toxicol 36:374–403.
  • Vohrer U, Zschoerper NP, Koehne Y, Langowski S, Oehr C. 2007. Plasma modification of carbon nanotubes and bucky papers. Plasma Process Polym 4:S871–S877.
  • Wang L, Stueckle TA, Mishra A, Meighan T, Castranova V, Rojanasakul Y. 2014. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes vs. asbestos in human small airway epithelial cells. Nanotoxicology 8:485–507.
  • Whittle JD, Short RD, Douglas CWI, Davies J. 2000. Differences in the aging of allyl alcohol, acrylic acid, allyamine, and octa-1,7-diene plasma polymers as studied by X-ray photoelectron spectroscopy. Chem Mater 12:2664–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.