253
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Time-resolved toxicity study reveals the dynamic interactions between uncoated silver nanoparticles and bacteria

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 637-646 | Received 20 Aug 2016, Accepted 13 May 2017, Published online: 31 Jul 2017

References

  • Abel Zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstädter J, Hinkley T, et al. 2015. Classic reaction kinetics can explain complex patterns of antibiotic action. Sci Transl Med 7:287ra73.
  • Alexander CM, Dabrowiak JC, Goodisman J. 2013. Gravitational sedimentation of gold nanoparticles. J Colloid Interface Sci 396:53–62.
  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–6.
  • Andrews JM. 2001. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16.
  • Auffan M, Achouak W, Rose J, Roncato M-A, Chanéac C, Waite DT, et al. 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–5.
  • Belda E, Van Heck RGA, Lopez-Sanchez MJ, Cruveiller S, Barbe V, Fraser C, et al. 2016. The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–24.
  • Boles MA, Ling D, Hyeon T, Talapin DV. 2016. The surface science of nanocrystals. Nat Mater 15:141–53.
  • Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. 2013. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 8:e64060.
  • Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Micro 14:320–30.
  • Briggs M. 2000. Boron Oxides, Boric Acid, and Borates. Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, Inc.
  • Bringmann G, Kühn R. 1980. Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res 14:231–41.
  • Chaloupka K, Malam Y, Seifalian AM. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–8.
  • Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ. 2013. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48:761–9.
  • Chernousova S, Epple M. 2013. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52:1636–53.
  • Cho EC, Zhang Q, Xia YN. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–91.
  • Choi O, Hu Z. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–8.
  • Dong F, Valsami-Jones E, Kreft J-U. 2016. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. J Nanopart Res 18:1–12.
  • Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. 2013. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chemical Rev 113:4708–54.
  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–6.
  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. 2011. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–7.
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–31.
  • Fujiwara K, Sotiriou GA, Pratsinis SE. 2015. Enhanced Ag(+) ion release from aqueous nanosilver suspensions by absorption of ambient CO2. Langmuir 31:5284–90.
  • Furtado LM, Norman BC, Xenopoulos MA, Frost PC, Metcalfe CD, Hintelmann H. 2015. Environmental fate of silver nanoparticles in Boreal Lake ecosystems. Environ Sci Technol 49:8441–50.
  • Gorham J, Rohlfing A, Lippa K, Maccuspie R, Hemmati A, David Holbrook R. 2014. Storage wars: how citrate-capped silver nanoparticle suspensions are affected by not-so-trivial decisions. J Nanopart Res 16:1–14.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22.
  • He D, Bligh MW, Waite TD. 2013. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ Sci Technol 47:9148–56.
  • Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, Liu S-T. 2015. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One 10:e0144306.
  • Huynh KA, Chen KL. 2011. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–71.
  • Joshi N, Ngwenya BT, Butler IB, French CE. 2015. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity. J Hazard Mater 287:51–8.
  • Keller AA, Lazareva A. 2014. Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70.
  • Kittler S, Greulich C, Diendorf J, Köller M, Epple M. 2010. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–54.
  • Klaus T, Joerger R, Olsson E, Granqvist CG. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–14.
  • Kwak JI, Cui R, Nam S-H, Kim SW, Chae Y, An Y-J. 2016. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems. Nanotoxicology 10:521–30.
  • Lemire JA, Harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–84.
  • Levard C, Hotze EM, Lowry GV, Brown GE. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–14.
  • Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE. 2013. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–45.
  • Liu J, Hurt RH. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–75.
  • Liu J, Sonshine DA, Shervani S, Hurt RH. 2010. Controlled release of biologically active silver from nanosilver surfaces. Acs Nano 4:6903–13.
  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–24.
  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, et al. 2012. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–36.
  • Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet JM, Vallet-Regi M, et al. 2014. The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B 2:1634–43.
  • Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K, Christie P. 2012. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46:7215–21.
  • Ma R, Levard C, Marinakos SM, Cheng YW, Liu J, Michel FM, et al. 2012. Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–9.
  • Malysheva A, Ivask A, Hager C, Brunetti G, Marzouk ER, Lombi E, Voelcker NH. 2015. Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. Nanotoxicology 10:385–90.
  • Metreveli G, Philippe A, Schaumann GE. 2015. Disaggregation of silver nanoparticle homoaggregates in a river water matrix. Sci Total Environ 535:35–44.
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–53.
  • Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C. 2007. Synthesis and study of silver nanoparticles. J Chem Educ 84:322–5.
  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins Dos Santos VaP, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808.
  • Peretyazhko TS, Zhang Q, Colvin VL. 2014. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–61.
  • Petersen EJ, Diamond SA, Kennedy AJ, Goss GG, Ho K, Lead J, et al. 2015. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol 49:9532–47.
  • Petersen EJ, Henry TB, Zhao J, Maccuspie RI, Kirschling TL, Dobrovolskaia MA, et al. 2014. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–46.
  • Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, De Aberasturi DJ, Merk V, et al. 2014. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 11:20130931.
  • Polte J, Tuaev X, Wuithschick M, Fischer A, Thuenemann AF, Rademann K, et al. 2012. Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. Acs Nano 6:5791–802.
  • Pourzahedi L, Eckelman MJ. 2015. Environmental life cycle assessment of nanosilver-enabled bandages. Environ Sci Technol 49:361–8.
  • Sankar MU, Aigal S, Maliyekkal SM, Chaudhary A, Anshup Kumar AA, et al. 2013. Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification. Proc Natl Acad Sci 110:8459–64.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–5.
  • Sekine R, Khurana K, Vasilev K, Lombi E, Donner E. 2015. Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: test container effects and recommendations. Nanotoxicology 9:1005–12.
  • Sokolov SV, Tschulik K, Batchelor-Mcauley C, Jurkschat K, Compton RG. 2015. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal Chem 87:10033–39.
  • Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE. 2012. Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28:15929–36.
  • Struempler AW. 1973. Adsorption characteristics of silver, lead, cadmium, zinc, and nickel on borosilicate glass, polyethylene, and polypropylene container surfaces. Anal Chem 45:2251–4.
  • Summers AO, Jacoby GA. 1978. Plasmid-determined resistance to boron and chromium compounds in pseudomonas aeruginosa. Antimicrob Agents Chemother 13:637–40.
  • Tejamaya M, Romer I, Merrifield RC, Lead JR. 2012. Stability of citrate, pvp, and peg coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–17.
  • Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. 2009. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother 63:745–57.
  • Van Hyning DL, Klemperer WG, Zukoski CF. 2001. Characterization of colloidal stability during precipitation reactions. Langmuir 17:3120–7.
  • Van Hyning DL, Zukoski CF. 1998. Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14:7034–46.
  • Vijayaraghavan K, Yun Y-S. 2008. Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–91.
  • Von Moos N, Bowen P, Slaveykova VI. 2014. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano 1:214–32.
  • Von Moos N, Slaveykova VI. 2014. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-state of the art and knowledge gaps. Nanotoxicology 8:605–30.
  • Wakshlak RB-K, Pedahzur R, Avnir D. 2015. Antibacterial activity of silver-killed bacteria: the 'zombies' effect. Sci Rep 5:955.
  • West FK, West PW, Iddings FA. 1966. Adsorption of traces of silver on container surfaces. Anal Chem 38:1566–70.
  • Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–5.
  • Xu HY, Qu F, Xu H, Lai WH, Wang YA, Aguilar ZP, Wei H. 2012. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25:45–53.
  • Zhang C, Hu Z, Deng B. 2015. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–27.
  • Zhang W, Crittenden J, Li K, Chen Y. 2012. Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. Environ Sci Technol 46:7054–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.