572
Views
42
CrossRef citations to date
0
Altmetric
Review Article

Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria – a critical review

, &
Pages 392-428 | Received 24 Apr 2018, Accepted 04 Sep 2018, Published online: 14 Feb 2019

References

  • Acharya, D., K. M. Singha, P. Pandey, B. Mohanta, J. Rajkumari, and L. P. Singha. 2018. “Shape Dependent Physical Mutilation and Lethal Effects of Silver Nanoparticles on Bacteria.” Scientific Reports 8: 201. doi:10.1038/s41598-017-18590-6
  • Adams, L. K., D. Y. Lyon, and P. J. Alvarez. 2006. “Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions.” Water Research 40 (19): 3527–3532. doi:10.1016/j.watres.2006.08.004.
  • Albanese, A., P. S. Tang, and W. C. Chan. 2012. “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems.” Annual Review of Biomedical Engineering 14 (1): 1–16. doi:10.1146/annurev-bioeng-071811-150124.
  • Ali, I. M., I. M. Ibrahim, E. F. Ahmed, and Q. A. Abbas. 2016. “Structural and Characteristics of Manganese Doped Zinc Sulfide Nanoparticles and Its Antibacterial Effect against Gram-Positive and Gram-Negative Bacteria.” Open Journal of Biophysics 06 (01): 1. doi:10.4236/ojbiphy.2016.61001.
  • Anderson, A. J., J. E. Mclean, A. R. Jacobson, and D. W. Britt. 2018. “CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production.” Journal of Agricultural and Food Chemistry. 66 (26), pp 6513–6524. doi:10.1021/acs.jafc.7b01302
  • André, L., N. Devau, P. Pedenaud, and M. Azaroual. 2017. “Silica Precipitation Kinetics: The Role of Solid Surface Complexation Mechanism Integrating the Magnesium Effects from 25 to 300 C.” Procedia Earth and Planetary Science 17: 217–220. doi:10.1016/j.proeps.2016.12.075.
  • Angus, A. A., and A. M. Hirsch. 2013. “Biofilm Formation in the Rhizosphere: Multispecies Interactions and Implications for Plant Growth.” Molecular Microbial Ecology of the Rhizosphere 1: 701–712. doi:10.1002/9781118297674.ch66
  • Anupama, R., S. Sajitha Lulu, A. Mukherjee, and S. Babu. 2018. “Cross-Regulatory Network in Pseudomonas aeruginosa Biofilm Genes and TiO2 Anatase Induced Molecular Perturbations in Key Proteins Unraveled by a Systems Biology Approach.” Gene 647: 289–296. doi:10.1016/j.gene.2018.01.042.
  • Auffan, M., J. Rose, M. R. Wiesner, and J.-Y. Bottero. 2009. “Chemical Stability of Metallic Nanoparticles: A Parameter Controlling Their Potential Cellular Toxicity in Vitro.” Environmental Pollution 157 (4): 1127–1133. doi:10.1016/j.envpol.2008.10.002.
  • Azam, A., A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic. 2012. “Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study.” International Journal of Nanomedicine 7: pp: 6003–6009. doi:10.2147/IJN.S35347
  • Badireddy, A. R., J. Farner Budarz, S. M. Marinakos, S. Chellam, and M. R. Wiesner. 2014. “Formation of Silver Nanoparticles in Visible Light-Illuminated Waters: Mechanism and Possible Impacts on the Persistence of AgNPs and Bacterial Lysis.” Environmental Engineering Science 31 (7): 338–349. doi:10.1089/ees.2013.0366.
  • Baek, Y.-W., and Y.-J. An. 2011. “Microbial Toxicity of Metal Oxide Nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.” Science of the Total Environment 409 (8): 1603–1608. doi:10.1016/j.scitotenv.2011.01.014.
  • Bandyopadhyay, S., J. R. Peralta-Videa, G. Plascencia-Villa, M. José-Yacamán, and J. L. Gardea-Torresdey. 2012. “Comparative Toxicity Assessment of CeO2 and ZnO Nanoparticles towards Sinorhizobium meliloti, a Symbiotic Alfalfa Associated Bacterium: Use of Advanced Microscopic and Spectroscopic Techniques.” Journal of Hazardous Materials 241–242: 379–386. doi:10.1016/j.jhazmat.2012.09.056.
  • Bandyopadhyay, S., G. Plascencia-Villa, A. Mukherjee, C. M. Rico, M. José-Yacamán, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2015. “Comparative Phytotoxicity of ZnO NPs, Bulk ZnO, and Ionic Zinc onto the Alfalfa Plants Symbiotically Associated with Sinorhizobium meliloti in Soil.” Science of the Total Environment 515–516: 60–69. doi:10.1016/j.scitotenv.2015.02.014.
  • Barton, L. E., M. Auffan, M. Durenkamp, S. Mcgrath, J.-Y. Bottero, and M. R. Wiesner. 2015. “Monte Carlo Simulations of the Transformation and Removal of Ag, TiO2, and ZnO Nanoparticles in Wastewater Treatment and Land Application of Biosolids.” Science of the Total Environment 511: 535–543. doi:10.1016/j.scitotenv.2014.12.056.
  • Bertuccio, A. J., and R. D. Tilton. 2017. “Silver Sink Effect of Humic Acid on Bacterial Surface Colonization in the Presence of Silver Ions and Nanoparticles.” Environmental Science & Technology 51 (3): 1754–1763. doi:10.1021/acs.est.6b04957.
  • Bhakya, S., S. Muthukrishnan, M. Sukumaran, M. Grijalva, L. Cumbal, J. F. Benjamin, T. S. Kumar, and M. Rao. 2016. “Antimicrobial, Antioxidant and Anticancer Activity of Biogenic Silver Nanoparticles–an Experimental Report.” RSC Advances 6 (84): 81436–81446. doi:10.1039/C6RA17569D.
  • Binh, C. T. T., T. Tong, J. F. Gaillard, K. A. Gray, and J. J. Kelly. 2014. “Common Freshwater Bacteria Vary in Their Responses to Short‐Term Exposure to Nano‐TiO2.” Environmental Toxicology and Chemistry 33 (2): 317–327. doi:10.1002/etc.2442.
  • Bondarenko, O., A. Ivask, A. Käkinen, I. Kurvet, and A. Kahru. 2013. “Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles.” PLoS One 8 (5): e64060. doi:10.1371/journal.pone.0064060.
  • Cakić, M., S. Glišić, G. Nikolić, G. M. Nikolić, K. Cakić, and M. Cvetinov. 2016. “Synthesis, Characterization and Antimicrobial Activity of Dextran Sulphate Stabilized Silver Nanoparticles.” Journal of Molecular Structure 1110: 156–161. doi:10.1016/j.molstruc.2016.01.040.
  • Calder, A. J., C. O. Dimkpa, J. E. Mclean, D. W. Britt, W. Johnson, and A. J. Anderson. 2012. “Soil Components Mitigate the Antimicrobial Effects of Silver Nanoparticles towards a Beneficial Soil Bacterium, Pseudomonas chlororaphis O6.” Science of the Total Environment 429: 215–222. doi:10.1016/j.scitotenv.2012.04.049.
  • Campuzano, S., B. E.-F. De Ávila, P. Yáñez-Sedeño, J. Pingarrón, and J. Wang. 2017. ‘Nano/Microvehicles for Efficient Delivery and (Bio)Sensing at the Cellular Level.” Chemical Science 8 (10): 6750–6763. doi:10.1039/c7sc02434g.
  • Cao, C.,. J. Huang, C. Yan, J. Liu, Q. Hu, and W. Guan. 2018. “Shifts of System Performance and Microbial Community Structure in a Constructed Wetland after Exposing Silver Nanoparticles.” Chemosphere 199: 661–669. doi:10.1016/j.chemosphere.2018.02.031.
  • Chambers, B. A., A. N. Afrooz, S. Bae, N. Aich, L. Katz, N. B. Saleh, and M. J. Kirisits. 2014. “Effects of Chloride and Ionic Strength on Physical Morphology, Dissolution, and Bacterial Toxicity of Silver Nanoparticles.” Environmental Science & Technology 48 (1): 761–769. doi:10.1021/es403969x.
  • Chen, C., J. M. Unrine, J. D. Judy, R. W. Lewis, J. Guo, D. H. Mcnear, Jr, and O. V. Tsyusko. 2015. “Toxicogenomic Responses of the Model Legume Medicago truncatula to Aged Biosolids Containing a Mixture of Nanomaterials (TiO2, Ag, and ZnO) from a Pilot Wastewater Treatment Plant.” Environmental Science & Technology 49 (14): 8759–8768. doi:10.1021/acs.est.5b01211.
  • Chen, M., X. Qin, and G. Zeng. 2017. “Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives.” Trends in Biotechnology 35 (9): 836–846. doi:10.1016/j.tibtech.2016.12.001.
  • Chen, M., S. Zhou, Y. Zhu, Y. Sun, G. Zeng, C. Yang, P. Xu, M. Yan, Z. Liu, and W. Zhang. 2018. “Toxicity of Carbon Nanomaterials to Plants, Animals and Microbes: Recent Progress from 2015-Present.” Chemosphere 206: 255–264. doi:10.1016/j.chemosphere.2018.05.020.
  • Chen, Z., P. Yang, Z. Yuan, and J. Guo. 2017. “Aerobic Condition Enhances Bacteriostatic Effects of Silver Nanoparticles in Aquatic Environment: An Antimicrobial Study on Pseudomonas aeruginosa.” Scientific Reports 7: 7398. doi:10.1038/s41598-017-07989-w
  • Chowdhury, N. R., M. Macgregor-Ramiasa, P. Zilm, P. Majewski, and K. Vasilev. 2016. “Chocolate’silver Nanoparticles: Synthesis, Antibacterial Activity and Cytotoxicity.” Journal of Colloid and Interface Science 482: 151–158. doi:10.1016/j.jcis.2016.08.003.
  • Collins, D., T. Luxton, N. Kumar, S. Shah, V. K. Walker, and V. Shah. 2012. “Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study.” PLoS One 7 (8): e42663. doi:10.1371/journal.pone.0042663.
  • Colman, B. P., C. L. Arnaout, S. Anciaux, C. K. Gunsch, M. F. Hochella, B. Kim, G. V. Lowry, et al. 2013. “Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario.” PLoS One 8 (2): e57189. doi:10.1371/journal.pone.0057189.
  • Combarros, R., S. Collado, and M. Díaz. 2016. “Toxicity of Titanium Dioxide Nanoparticles on Pseudomonas putida.” Water Research 90: 378–386. doi:10.1016/j.watres.2015.12.040.
  • Cota-Ruiz, K., M. Delgado-Rios, A. Martínez-Martínez, J. A. Núñez-Gastelum, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2018. “Current Findings on Terrestrial Plants – Engineered Nanomaterial Interactions: Are Plants Capable of Phytoremediating Nanomaterials from Soil?’ Current Opinion in Environmental Science & Health 6: 9–15. doi:10.1016/j.coesh.2018.06.005.
  • Dams, R., A. Biswas, A. Olesiejuk, T. Fernandes, and N. Christofi. 2011. “Silver Nanotoxicity Using a Light-Emitting Biosensor Pseudomonas putida Isolated from a Wastewater Treatment Plant.” Journal of Hazardous Materials 195: 68–72. doi:10.1016/j.jhazmat.2011.08.013.
  • Dardanelli, M. S., S. Carletti, N. Paulucci, D. Medeot, E. R. Caceres, F. Vita, M. Bueno, M. Fumero, and M. Garcia. 2010. ‘Benefits of Plant Growth-Promoting Rhizobacteria and Rhizobia in Agriculture.’In Plant Growth and Health Promoting Bacteria, 1–20. New York: Springer.
  • Dasari, T. P., and H.-M. Hwang. 2010. “The Effect of Humic Acids on the Cytotoxicity of Silver Nanoparticles to a Natural Aquatic Bacterial Assemblage.” Science of the Total Environment 408 (23): 5817–5823. doi:10.1016/j.scitotenv.2010.08.030.
  • Dimkpa, C. O. 2018. “Soil Properties Influence the Response of Terrestrial Plants to Metallic Nanoparticles Exposure.” Current Opinion in Environmental Science & Health 6: 1. doi:10.1016/j.coesh.2018.06.007.
  • Dimkpa, C. O., A. Calder, D. W. Britt, J. E. Mclean, and A. J. Anderson. 2011. “Responses of a Soil Bacterium, Pseudomonas chlororaphis O6 to Commercial Metal Oxide Nanoparticles Compared with Responses to Metal Ions.” Environmental Pollution 159 (7): 1749–1756. doi:10.1016/j.envpol.2011.04.020.
  • Dimkpa, C. O., A. Calder, P. Gajjar, S. Merugu, W. Huang, D. W. Britt, J. E. Mclean, W. P. Johnson, and A. J. Anderson. 2011. “Interaction of Silver Nanoparticles with an Environmentally Beneficial Bacterium, Pseudomonas chlororaphis.” Journal of Hazardous Materials 188 (1–3): 428–435. doi:10.1016/j.jhazmat.2011.01.118.
  • Dimkpa, C. O., T. Hansen, J. Stewart, J. E. Mclean, D. W. Britt, and A. J. Anderson. 2015. “ZnO Nanoparticles and Root Colonization by a Beneficial Pseudomonad Influence Essential Metal Responses in Bean (Phaseolus vulgaris).” Nanotoxicology. 9(3), 271–278. doi:10.3109/17435390.2014.900583
  • Dimkpa, C. O., J. E. Mclean, D. W. Britt, and A. J. Anderson. 2013. “Antifungal Activity of ZnO Nanoparticles and Their Interactive Effect with a Biocontrol Bacterium on Growth Antagonism of the Plant Pathogen Fusarium Graminearum.” Biometals 26 (6): 913–924. doi:10.1007/s10534-013-9667-6.
  • Dimkpa, C. O., J. E. Mclean, D. W. Britt, and A. J. Anderson. 2015. “Nano-CuO and Interaction with Nano-ZnO or Soil Bacterium Provide Evidence for the Interference of Nanoparticles in Metal Nutrition of Plants.” Ecotoxicology 24 (1): 119–129. doi:10.1007/s10646-014-1364-x.
  • Dimkpa, C. O., J. C. White, W. H. Elmer, and J. Gardea-Torresdey. 2017. “Nanoparticle and Ionic Zn Promote Nutrient Loading of Sorghum Grain under Low Npk Fertilization.” Journal of Agricultural and Food Chemistry 65 (39): 8552–8559. doi:10.1021/acs.jafc.7b02961.
  • Dinesh, R., M. Anandaraj, V. Srinivasan, and S. Hamza. 2012. “Engineered Nanoparticles in the Soil and Their Potential Implications to Microbial Activity.” Geoderma 173–174: 19–27. doi:10.1016/j.geoderma.2011.12.018.
  • Djurišić, A. B., Y. H. Leung, A. M. C. Ng, X. Y. Xu, P. K. H. Lee, N. Degger, and R. S. S. Wu. 2015. “Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts.” Small 11 (1): 26–44. doi:10.1002/smll.201303947.
  • Docter, D., D. Westmeier, M. Markiewicz, S. Stolte, S. Knauer, and R. Stauber. 2015. “The Nanoparticle Biomolecule Corona: Lessons Learned–Challenge Accepted?’ Chemical Society Reviews 46 (42): 6121. doi:10.1002/chin.201542269.
  • Dong, F., N. F. Mohd Zaidi, E. Valsami-Jones, and J.-U. Kreft. 2017. “Time-Resolved Toxicity Study Reveals the Dynamic Interactions between Uncoated Silver Nanoparticles and Bacteria.” Nanotoxicology 11(5): 637–646. doi:10.1080/17435390.2017.1342010
  • Doody, M. A., D. Wang, H. P. Bais, and Y. Jin. 2016. “Differential Antimicrobial Activity of Silver Nanoparticles to Bacteria Bacillus subtilis and Escherichia coli, and Toxicity to Crop Plant Zea Mays and Beneficial B. subtilis-Inoculated Z. Mays.” Journal of Nanoparticle Research 18: 290. doi:10.1007/s11051-016-3602-z
  • Dorobantu, L. S., C. Fallone, A. J. Noble, J. Veinot, G. Ma, G. G. Goss, and R. E. Burrell. 2015. “Toxicity of Silver Nanoparticles against Bacteria, Yeast, and Algae.” Journal of Nanoparticle Research 17: 172. doi:10.1007/s11051-015-2984-7.
  • Dove, P. M., and C. M. Craven. 2005. “Surface Charge Density on Silica in Alkali and Alkaline Earth Chloride Electrolyte Solutions.” Geochimica Et Cosmochimica Acta 69 (21): 4963–4970. doi:10.1016/j.gca.2005.05.006.
  • Du, W., Y. Sun, R. Ji, J. Zhu, J. Wu, and H. Guo. 2011. “TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil.” Journal of Environmental Monitoring 13 (4): 822–828. doi:10.1039/c0em00611d.
  • Duhan, J. S., R. Kumar, N. Kumar, P. Kaur, K. Nehra, and S. Duhan. 2017. “Nanotechnology: The New Perspective in Precision Agriculture.” Biotechnology Reports (Amsterdam, Netherlands) 15: 11–23. doi:10.1016/j.btre.2017.03.002.
  • El Badawy, A. M., R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat. 2011. “Surface Charge-Dependent Toxicity of Silver Nanoparticles.” Environmental Science & Technology 45 (1): 283–287. doi:10.1021/es1034188.
  • El Hadri, H., S. M. Louie, and V. A. Hackley. 2018. “Assessing the Interactions of Metal Nanoparticles in Soil and Sediment Matrices – A Quantitative Analytical Multi-Technique Approach.” Environmental Science: Nano 5 (1): 203–214. doi:10.1039/C7EN00868F.
  • Etesami, H., and D. K. Maheshwari. 2018. “Use of Plant Growth Promoting Rhizobacteria (PGPRs) with Multiple Plant Growth Promoting Traits in Stress Agriculture: Action Mechanisms and Future Prospects.” Ecotoxicology and Environmental Safety 156: 225–246. doi:10.1016/j.ecoenv.2018.03.013.
  • Eymard-Vernain, E., C. Lelong, A.-E. Pradas Del Real, R. Soulas, S. Bureau, V. Tardillo Suarez, B. Gallet, O. Proux, H. Castillo-Michel, and G. R. Sarret. 2018. “Impact of a Model Soil Microorganism and of Its Secretome on the Fate of Silver Nanoparticles.” Environmental Science & Technology 52 (1): 71–78. doi:10.1021/acs.est.7b04071.
  • Eymard-Vernain, E., S. Luche, T. Rabilloud, and C. Lelong. 2018. “Impact of Nanoparticles on the Bacillus subtilis (3610) Competence.” Scientific Reports 8: 2978. doi:10.1038/s41598-018-21402-0
  • Fabrega, J., S. R. Fawcett, J. C. Renshaw, and J. R. Lead. 2009. “Silver Nanoparticle Impact on Bacterial Growth: Effect of Ph, Concentration, and Organic Matter.” Environmental Science & Technology 43 (19): 7285–7290. doi:10.1021/es803259g.
  • Fabrega, J., J. C. Renshaw, and J. R. Lead. 2009. “Interactions of Silver Nanoparticles with Pseudomonas putida Biofilms.” Environmental Science & Technology 43 (23): 9004–9009. doi:10.1021/es901706j.
  • Fan, R., Y. C. Huang, M. A. Grusak, C. Huang, and D. J. Sherrier. 2014. “Effects of Nano-TiO2 on the Agronomically-Relevant Rhizobium–Legume Symbiosis.” Science of the Total Environment 466–467: 503–512. doi:10.1016/j.scitotenv.2013.07.032.
  • Fatima, F., S. R. Verma, N. Pathak, and P. Bajpai. 2016. “Extracellular Mycosynthesis of Silver Nanoparticles and Their Microbicidal Activity.” Journal of Global Antimicrobial Resistance 7: 88–92. doi:10.1016/j.jgar.2016.07.013.
  • Feng, Q., J. Wu, G. Chen, F. Cui, T. Kim, and J. Kim. 2000. “A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus.” Journal of Biomedical Materials Research 52 (4): 662–668. doi:10.1002/1097-4636(20001215)52:4 < 662::AID-JBM10 > 3.0.CO;2-3.
  • Fennell, Y., P. Ymele-Leki, T. A. Adegboye, and K. L. Jones. 2017. “Impact of Sulfidation of Silver Nanoparticles on Established P. aeruginosa Biofilm.” Journal of Biomaterials and Nanobiotechnology 08 (01): 83–95. doi:10.4236/jbnb.2017.81006.
  • Feris, K., C. Otto, J. Tinker, D. Wingett, A. Punnoose, A. Thurber, M. Kongara, et al. 2010. “Electrostatic Interactions Affect Nanoparticle-Mediated Toxicity to Gram-Negative Bacterium Pseudomonas aeruginosa Pao1.” Langmuir 26 (6): 4429–4436. doi:10.1021/la903491z.
  • French, R. A., A. R. Jacobson, B. Kim, S. L. Isley, R. L. Penn, and P. C. Baveye. 2009. “Influence of Ionic Strength, Ph, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles.” Environmental Science & Technology 43 (5): 1354–1359. doi:10.1021/es802628n.
  • Gajjar, P., B. Pettee, D. W. Britt, W. Huang, W. P. Johnson, and A. J. Anderson. 2009. “Antimicrobial Activities of Commercial Nanoparticles against an Environmental Soil Microbe, Pseudomonas putida Kt2440.” Journal of Biological Engineering 3 (1): 9. doi:10.1186/1754-1611-3-9.
  • Galleguillos, C., C. Aguirre, J. Miguel Barea, and R. Azcón. 2000. “Growth Promoting Effect of Two Sinorhizobium meliloti Strains (a Wild Type and Its Genetically Modified Derivative) on a Non-Legume Plant Species in Specific Interaction with Two Arbuscular Mycorrhizal Fungi.” Plant Science 159 (1): 57–63. doi:10.1016/S0168-9452(00)00321-6.
  • Gambino, M., V. Marzano, F. Villa, A. Vitali, C. Vannini, P. Landini, and F. Cappitelli. 2015. “Effects of Sublethal Doses of Silver Nanoparticles on Bacillus subtilis Planktonic and Sessile Cells.” Journal of Applied Microbiology 118 (5): 1103–1115. doi:10.1111/jam.12779.
  • Ganesh Babu, M. M., J. Sridhar, and P. Gunasekaran. 2011. “Global Transcriptome Analysis of Bacillus cereus ATCC 14579 in Response to Silver Nitrate Stress.” Journal of Nanobiotechnology 9 (1): 49.doi:10.1186/1477-3155-9-49.
  • Gao, X., A. Avellan, S. Laughton, R. Vaidya, S. M. Rodrigues, E. A. Casman, and G. V. Lowry. 2018. “Cuo Nanoparticle Dissolution and Toxicity to Wheat (Triticum aestivum) in Rhizosphere Soil.” Environmental Science & Technology 52 (5): 2888–2897. doi:10.1021/acs.est.7b05816.
  • García-Gómez, C., A. Obrador, D. González, M. Babín, and M. D. Fernández. 2017. “Comparative Effect of ZnO NPs, ZnO Bulk and ZnSO4 in the Antioxidant Defences of Two Plant Species Growing in Two Agricultural Soils under Greenhouse Conditions.” Science of the Total Environment 589: 11–24. doi:10.1016/j.scitotenv.2017.02.153.
  • García-Lara, B., M. Á. Saucedo-Mora, J. A. Roldán-Sánchez, B. Pérez-Eretza, M. Ramasamy, J. Lee, R. Coria-Jimenez, M. Tapia, V. Varela-Guerrero, and R. García-Contreras. 2015. “Inhibition of Quorum-Sensing-Dependent Virulence Factors and Biofilm Formation of Clinical and Environmental Pseudomonas aeruginosa Strains by ZnO Nanoparticles.” Letters in Applied Microbiology 61 (3): 299–305. doi:10.1111/lam.12456.
  • Garner, K. L., S. Suh, and A. A. Keller. 2017. “Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the Nanofate Model.” Environmental Science & Technology 51 (10): 5541–5551. doi:10.1021/acs.est.6b05279.
  • Ge, Y., A. M. Horst, J. Kim, J. H. Priester, Z. S. Welch, P. A. Holden, B. Xing, C. Vecitis, and N. Senesi. 2016. “Toxicity of Manufactured Nanomaterials to Microorganisms.” Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity: Biophysicochemical Processes and Toxicity edited by Xing Baoshan, Chad D. Vecitis and Nicola Senesi, Chapter 17, 4. 320–346. doi:10.1002/9781119275855.ch17
  • Ge, Y., J. H. Priester, L. C. Van De Werfhorst, J. P. Schimel, and P. A. Holden. 2013. “Potential Mechanisms and Environmental Controls of TiO2 Nanoparticle Effects on Soil Bacterial Communities.” Environmental Science & Technology 47 (24): 14411–14417. doi:10.1021/es403385c.
  • Ge, Y., J. P. Schimel, and P. A. Holden. 2011. “Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities.” Environmental Science & Technology 45 (4): 1659–1664. doi:10.1021/es103040t.
  • Ge, Y., J. P. Schimel, and P. A. Holden. 2012. “Identification of Soil Bacteria Susceptible to TiO2 and ZnO Nanoparticles.” Applied and Environmental Microbiology 78 (18): 6749–6758. doi:10.1128/AEM.00941-12.
  • Georgantzopoulou, A., Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff, M. Wojewodzka, M. Kruszewski, et al. 2012. “Ag Nanoparticles: Size-and Surface-Dependent Effects on Model Aquatic Organisms and Uptake Evaluation with Nanosims.” Nanotoxicology 7 (7): 1168–1178. doi:10.3109/17435390.2012.715312.
  • Giessen, T. W., and P. A. Silver. 2016. “Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.” ACS Synthetic Biology 5 (12): 1497–1504. doi:10.1021/acssynbio.6b00117.
  • González-Fuenzalida, R. A., L. Sanjuan-Navarro, Y. Moliner-Martínez, and P. Campíns-Falcó. 2018. “Quantitative Study of the Capture of Silver Nanoparticles by Several Kinds of Soils.” Science of the Total Environment 630: 1226–1236. doi:10.1016/j.scitotenv.2018.02.307.
  • Gonzalez, L., and M. Kirsch-Volders. 2016. “Biomonitoring of Genotoxic Effects for Human Exposure to Nanomaterials: The Challenge Ahead.” Mutation Research/Reviews in Mutation Research 768: 14–26. doi:10.1016/j.mrrev.2016.03.002.
  • Gottschalk, F., C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack. 2015. “Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment.” International Journal of Environmental Research and Public Health 12 (5): 5581–5602. doi:10.3390/ijerph120505581.
  • Gottschalk, F., T. Sonderer, R. W. Scholz, and B. Nowack. 2009. “Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, Cnt, Fullerenes) for Different Regions.” Environmental Science & Technology 43 (24): 9216–9222. doi:10.1021/es9015553.
  • Gozdziewska, M., G. Cichowicz, K. Markowska, K. Zawada, and E. Megiel. 2015. “Nitroxide-Coated Silver Nanoparticles: Synthesis, Surface Physicochemistry and Antibacterial Activity.” RSC Advances 5 (72): 58403–58415. doi:10.1039/C5RA09366J.
  • Graf, C., D. Nordmeyer, C. Sengstock, S. Ahlberg, J. Diendorf, J. Raabe, M. Epple, et al. 2018. “Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles.” Langmuir 34 (4): 1506–1519. doi:10.1021/acs.langmuir.7b03126.
  • Guzman, M., J. Dille, and S. Godet. 2012. “Synthesis and Antibacterial Activity of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria.” Nanomedicine-Nanotechnology Biology and Medicine 8 (1): 37–45. doi:10.1016/j.nano.2011.05.007.
  • Ha, M. K., T. X. Trinh, J. S. Choi, D. Maulina, H. G. Byun, and T. H. Yoon. 2018. “Toxicity Classification of Oxide Nanomaterials: Effects of Data Gap Filling and Pchem Score-Based Screening Approaches.” Scientific Reports 8: 3141. doi:10.1038/s41598-018-21431-9
  • Haapaniemi, E., S. Botla, J. Persson, B. Schmierer, and J. Taipale. 2018. “Crispr–Cas9 Genome Editing Induces a P53-Mediated DNA Damage Response.” Nature Medicine 24:927–930. doi:10.1038/s41591-018-0049-z
  • Haas, D., and C. Keel. 2003. “Regulation of Antibiotic Production in Root-Colonizing Pseudomonas Spp. And Relevance for Biological Control of Plant Disease.” Annual Review of Phytopathology 41: 117–153. doi:10.1146/annurev.phyto.41.052002.095656
  • Hachicho, N., P. Hoffmann, K. Ahlert, and H. J. Heipieper. 2014. “Effect of Silver Nanoparticles and Silver Ions on Growth and Adaptive Response Mechanisms of Pseudomonas putida Mt-2.” FEMS Microbiology Letters 355 (1): 71–77. doi:10.1111/1574-6968.12460.
  • Hakim, J. A., H. Koo, J. D. Van Elsas, J. T. Trevors, and A. K. Bej. 2016. “Crispr–Cas System: A New Paradigm for Bacterial Stress Response through Genome Rearrangement.” Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, edited by Frans J. de Bruijn, 146–160. doi:10.1002/9781119004813.ch12
  • Hänsch, M., and C. Emmerling. 2010. “Effects of Silver Nanoparticles on the Microbiota and Enzyme Activity in Soil.” Journal of Plant Nutrition and Soil Science 173 (4): 554–558. doi:10.1002/jpln.200900358.
  • Hartmann, T., M. Mühling, A. Wolf, F. Mariana, T. Maskow, F. Mertens, T. R. Neu, and J. Lerchner. 2013. “A Chip-Calorimetric Approach to the Analysis of Ag Nanoparticle Caused Inhibition and Inactivation of Beads-Grown Bacterial Biofilms.” Journal of Microbiological Methods 95 (2): 129–137. doi:10.1016/j.mimet.2013.08.003.
  • Hartono, M. R., A. Kushmaro, X. Chen, and R. S. Marks. 2018. “Probing the Toxicity Mechanism of Multiwalled Carbon Nanotubes on Bacteria.” Environmental Science and Pollution Research 25 (5): 5003–5012. doi:10.1007/s11356-017-0782-8.
  • Harwood, C. R., S. M. Cutting, and R. Chambert. 1990. “Molecular Biological Methods for Bacillus.” In Southern Gate Chichester, West Sussex. England: Wiley.
  • He, Y., X. Li, Y. Zheng, Z. Wang, Z. Ma, Q. Yang, B. Yao, Y. Zhao, and H. Zhang. 2018. “A Green Approach for Synthesizing Silver Nanoparticles, and Their Antibacterial and Cytotoxic Activities.” New Journal of Chemistry 42 (4): 2882–2888. doi:10.1039/C7NJ04224H.
  • Huang, Y. C., R. Fan, M. A. Grusak, J. D. Sherrier, and C. Huang. 2014. “Effects of Nano-ZnO on the Agronomically Relevant Rhizobium–Legume Symbiosis.” Science of the Total Environment 497–498: 78–90. doi:10.1016/j.scitotenv.2014.07.100.
  • Ivask, A., A. Elbadawy, C. Kaweeteerawat, D. Boren, H. Fischer, Z. Ji, C. H. Chang, et al. 2014. “Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver.” ACS Nano 8 (1): 374–386. doi:10.1021/nn4044047.
  • Ivask, A., I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja, S. Suppi, H. Vija, et al. 2014. “Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells in Vitro.” PLoS One 9 (7): e102108. doi:10.1371/journal.pone.0102108.
  • Jalvo, B., M. Faraldos, A. Bahamonde, and R. Rosal. 2017. “Antimicrobial and Antibiofilm Efficacy of Self-Cleaning Surfaces Functionalized by TiO2 Photocatalytic Nanoparticles against Staphylococcus aureus and Pseudomonas putida.” Journal of Hazardous Materials 340: 160–170. doi:10.1016/j.jhazmat.2017.07.005.
  • James, R. O., and T. W. Healy. 1972. “Adsorption of Hydrolyzable Metal Ions at the Oxide—Water Interface. II. Charge Reversal of SiO2 and TiO2 Colloids by Adsorbed Co (II), La (III), and Th (IV) as Model Systems.” Journal of Colloid and Interface Science 40 (1): 53–64. doi:10.1016/0021-9797(72)90173-7.
  • Jiang, J., G. Oberdörster, and P. Biswas. 2009. “Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies.” Journal of Nanoparticle Research 11 (1): 77–89. doi:10.1007/s11051-008-9446-4.
  • Jiang, W., H. Mashayekhi, and B. Xing. 2009. “Bacterial Toxicity Comparison between Nano- and Micro-Scaled Oxide Particles.” Environmental Pollution 157 (5): 1619–1625. doi:10.1016/j.envpol.2008.12.025.
  • Jin, X., M. Li, J. Wang, C. Marambio-Jones, F. Peng, X. Huang, R. Damoiseaux, and E. M. Hoek. 2010. “High-Throughput Screening of Silver Nanoparticle Stability and Bacterial Inactivation in Aquatic Media: Influence of Specific Ions.” Environmental Science & Technology 44 (19): 7321–7328. doi:10.1021/es100854g.
  • Jones, N., B. Ray, K. T. Ranjit, and A. C. Manna. 2008. “Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms.” FEMS Microbiology Letters 279 (1): 71–76. doi:10.1111/j.1574-6968.2007.01012.x.
  • Joshi, N., B. T. Ngwenya, and C. E. French. 2012. “Enhanced Resistance to Nanoparticle Toxicity Is Conferred by Overproduction of Extracellular Polymeric Substances.” Journal of Hazardous Materials 241–242: 363–370. doi:10.1016/j.jhazmat.2012.09.057.
  • Judy, J. D., and P. M. Bertsch. 2014. “Bioavailability, Toxicity, and Fate of Manufactured Nanomaterials in Terrestrial Ecosystems.” Advances in Agronomy 123: 1–64. doi:10.1016/B978-0-12-420225-2.00001-7
  • Judy, J. D., J. K. Kirby, C. Creamer, M. J. Mclaughlin, C. Fiebiger, C. Wright, T. R. Cavagnaro, and P. M. Bertsch. 2015. “Effects of Silver Sulfide Nanomaterials on Mycorrhizal Colonization of Tomato Plants and Soil Microbial Communities in Biosolid-Amended Soil.” Environmental Pollution 206: 256–263. doi:10.1016/j.envpol.2015.07.002.
  • Judy, J. D., D. H. McNear, C. Chen, R. W. Lewis, O. V. Tsyusko, P. M. Bertsch, W. Rao, et al. 2015. “Nanomaterials in Biosolids Inhibit Nodulation, Shift Microbial Community Composition, and Result in Increased Metal Uptake Relative to Bulk/Dissolved Metals.” Environmental Science & Technology 49 (14): 8751–8758. doi:10.1021/acs.est.5b01208.
  • Kaegi, R., A. Voegelin, C. Ort, B. Sinnet, B. Thalmann, J. Krismer, H. Hagendorfer, M. Elumelu, and E. Mueller. 2013. “Fate and Transformation of Silver Nanoparticles in Urban Wastewater Systems.” Water Research 47 (12): 3866–3877. doi:10.1016/j.watres.2012.11.060.
  • Kang, F., P. J. Alvarez, and D. Zhu. 2014. “Microbial Extracellular Polymeric Substances Reduce Ag + to Silver Nanoparticles and Antagonize Bactericidal Activity.” Environmental Science & Technology 48 (1): 316–322. doi:10.1021/es403796x.
  • Ke, P. C., S. Lin, W. J. Parak, T. P. Davis, and F. Caruso. 2017. “A Decade of the Protein Corona.” ACS Nano 11 (12): 11773–11776. doi:10.1021/acsnano.7b08008.
  • Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Haas, and G. Defago. 1992. “Suppression of Root Diseases by Pseudomonas fluorescens Cha0 – Importance of the Bacterial Secondary Metabolite 2,4-Diacetylphloroglucinol.” Molecular Plant-Microbe Interactions 5: 4–13. doi:10.1094/MPMI-5-004
  • Keller, A. A., S. Mcferran, A. Lazareva, and S. Suh. 2013. “Global Life Cycle Releases of Engineered Nanomaterials.” Journal of Nanoparticle Research 15: 1692. doi:10.1007/s11051-013-1692-4
  • Khan, M. F., A. H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, U. Baig, M. R. Zaheer, M. M. Alam, and A. M. Khan. 2016. “Sol-Gel Synthesis of Thorn-Like ZnO Nanoparticles Endorsing Mechanical Stirring Effect and Their Antimicrobial Activities: Potential Role as Nano-Antibiotics.” Scientific Reports 6: 27689. doi:10.1038/srep27689
  • Kim, S., Y.-W. Baek, and Y.-J. An. 2011. “Assay-Dependent Effect of Silver Nanoparticles to Escherichia coli and Bacillus subtilis.” Applied Microbiology and Biotechnology 92 (5): 1045–1052. doi:10.1007/s00253-011-3611-x.
  • Kim, S. W., and Y.-J. An. 2012. “Effect of ZnO and TiO2 Nanoparticles Preilluminated with UVA and UVB Light on Escherichia coli and Bacillus subtilis.” Applied Microbiology and Biotechnology 95 (1): 243–253. doi:10.1007/s00253-012-4153-6.
  • Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. Mclaughlin, and J. R. Lead. 2008. “Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects.” Environmental Toxicology and Chemistry 27 (9): 1825–1851. doi:10.1897/08-090.1.
  • Klaine, S. J., A. A. Koelmans, N. Horne, S. Carley, R. D. Handy, L. Kapustka, B. Nowack, and F. Von Der Kammer. 2012. “Paradigms to Assess the Environmental Impact of Manufactured Nanomaterials.” Environmental Toxicology and Chemistry 31 (1): 3–14. doi:10.1002/etc.733.
  • Kloepper, J. W., C.-M. Ryu, and S. Zhang. 2004. “Induced Systemic Resistance and Promotion of Plant Growth by Bacillus Spp.” Phytopathology 94 (11): 1259–1266. doi:10.1094/PHYTO.2004.94.11.1259.
  • Kokalis-Burelle, N., J. W. Kloepper, and M. S. Reddy. 2006. “Plant Growth-Promoting Rhizobacteria as Transplant Amendments and Their Effects on Indigenous Rhizosphere Microorganisms.” Applied Soil Ecology 31 (1–2): 91–100. doi:10.1016/j.apsoil.2005.03.007.
  • Kowshik, M., S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S. K. Kulkarni, and K. Paknikar. 2003. “Extracellular Synthesis of Silver Nanoparticles by a Silver-Tolerant Yeast Strain MKY3.” Nanotechnology 14 (1): 95. doi:10.1088/0957-4484/14/1/321.
  • Kubacka, A., M. S. Diez, D. Rojo, R. Bargiela, S. Ciordia, I. Zapico, J. P. Albar, et al. 2014. “Understanding the Antimicrobial Mechanism of TiO2-Based Nanocomposite Films in a Pathogenic Bacterium.” Scientific Reports 4: 4134. doi:10.1038/srep04134
  • Kumar, N., V. Shah, and V. K. Walker. 2011. “Perturbation of an Arctic Soil Microbial Community by Metal Nanoparticles.” Journal of Hazardous Materials 190 (1–3): 816–822. doi:10.1016/j.jhazmat.2011.04.005.
  • Kumar, N., V. Shah, and V. K. Walker. 2012. “Influence of a Nanoparticle Mixture on an Arctic Soil Community.” Environmental Toxicology and Chemistry 31 (1): 131–135. doi:10.1002/etc.721.
  • Kumari, J., D. Kumar, A. Mathur, A. Naseer, R. R. Kumar, P. Thanjavur Chandrasekaran, G. Chaudhuri, et al. 2014. “Cytotoxicity of TiO2 Nanoparticles towards Freshwater Sediment Microorganisms at Low Exposure Concentrations.” Environmental Research 135: 333–345. doi:10.1016/j.envres.2014.09.025.
  • Kwak, J. I., R. Cui, S.-H. Nam, S. W. Kim, Y. Chae, and Y.-J. An. 2016. “Multispecies Toxicity Test for Silver Nanoparticles to Derive Hazardous Concentration Based on Species Sensitivity Distribution for the Protection of Aquatic Ecosystems.” Nanotoxicology 10 (5): 521–530. doi:10.3109/17435390.2015.1090028.
  • Lead, J. R., G. E. Batley, P. J. Alvarez, M. N. Croteau, R. D. Handy, M. J. Mclaughlin, J. D. Judy, and K. Schirmer. 2018. “Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects—An Updated Review.” Environmental Toxicology and Chemistry. 37(8):2029–2063. doi:10.1002/etc.4147
  • Lee, J.-H., Y.-G. Kim, M. H. Cho, and J. Lee. 2014. “ZnO Nanoparticles Inhibit Pseudomonas aeruginosa Biofilm Formation and Virulence Factor Production.” Microbiological Research 169 (12): 888–896. doi:10.1016/j.micres.2014.05.005.
  • Lehndorff, E., M. Houtermans, P. Winkler, K. Kaiser, A. Kölbl, M. Romani, D. Said-Pullicino, et al. 2016. “Black Carbon and Black Nitrogen Storage under Long-Term Paddy and Non-Paddy Management in Major Reference Soil Groups.” Geoderma 284: 214–225. doi:10.1016/j.geoderma.2016.08.026.
  • Levard, C., E. M. Hotze, B. P. Colman, A. L. Dale, L. Truong, X. Y. Yang, A. J. Bone, et al. 2013. “Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity.” Environmental Science & Technology 47 (23): 13440–13448. doi:10.1021/es403527n.
  • Lewis, R. W., J. Unrine, P. M. Bertsch, and D. H. Mcnear. Jr. 2017. “Silver Engineered Nanomaterials and Ions Elicit Species-Specific O2 Consumption Responses in Plant Growth Promoting Rhizobacteria.” Biointerphases 12 (5): 05G604. doi:10.1116/1.4995605.
  • Li, M., S. Pokhrel, X. Jin, L. MäDler, R. Damoiseaux, and E. M. Hoek. 2011. “Stability, Bioavailability, and Bacterial Toxicity of ZnO and Iron-Doped ZnO Nanoparticles in Aquatic Media.” Environmental Science & Technology 45 (2): 755–761. doi:10.1021/es102266g.
  • Li, W.-R., X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, and Y.-B. Chen. 2010. “Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli.” Applied Microbiology and Biotechnology 85 (4): 1115–1122. doi:10.1007/s00253-009-2159-5.
  • Lian, F., and B. Xing. 2017. “Black Carbon (Biochar) in Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk.” Environmental Science & Technology 51 (23): 13517–13532. doi:10.1021/acs.est.7b02528.
  • Liné, C., C. Larue, and E. Flahaut. 2017. “Carbon Nanotubes: Impacts and Behaviour in the Terrestrial Ecosystem-a Review.” Carbon 123: 767–785. doi:10.1016/j.carbon.2017.07.089.
  • Liu, C., J. J. Gallagher, K. K. Sakimoto, E. M. Nichols, C. J. Chang, M. C. Y. Chang, and P. Yang. 2015. “Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals.” Nano Letters 15 (5): 3634–3639. doi:10.1021/acs.nanolett.5b01254.
  • López-Moreno, M. L., C. Cassé, and S. N. Correa-Torres. 2018. “Engineered Nanomaterials Interactions with Living Plants: Benefits, Hazards and Regulatory Policies.” Current Opinion in Environmental Science & Health 6: 36–41. doi:10.1016/j.coesh.2018.07.013.
  • López-Moreno, M. L., G. de la Rosa, J. A. Hernández-Viezcas, H. Castillo-Michel, C. E. Botez, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2010. “Evidence of the Differential Biotransformation and Genotoxicity of ZnO and CeO2 Nanoparticles on Soybean (Glycine max) Plants.” Environmental Science & Technology 44 (19): 7315–7320. doi:10.1021/es903891g.
  • Ma, C., J. C. White, J. Zhao, Q. Zhao, and B. Xing. 2018. “Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications.” Annual Review of Food Science and Technology 9 (1): 129–153. doi:10.1146/annurev-food-030117-012657.
  • Ma, W., S. Sebestianova, J. Sebestian, G. Burd, F. Guinel, and B. Glick. 2003. “Prevalence of 1-Aminocyclopropane-1-Carboxylate Deaminase in Rhizobium Spp.” Antonie Van Leeuwenhoek 83 (3): 285–291. doi:12776924.
  • Mallevre, F., C. Alba, C. Milne, S. Gillespie, T. F. Fernandes, and T. J. Aspray. 2016. “Toxicity Testing of Pristine and Aged Silver Nanoparticles in Real Wastewaters Using Bioluminescent Pseudomonas putida.” Nanomaterials 6 (3): 49. doi:10.3390/nano6030049.
  • Mallevre, F., T. F. Fernandes, and T. J. Aspray. 2014. “Silver, Zinc Oxide and Titanium Dioxide Nanoparticle Ecotoxicity to Bioluminescent Pseudomonas putida in Laboratory Medium and Artificial Wastewater.” Environmental Pollution 195: 218–225. doi:10.1016/j.envpol.2014.09.002.
  • Mallevre, F., T. F. Fernandes, and T. J. Aspray. 2016. “Pseudomonas putida Biofilm Dynamics following a Single Pulse of Silver Nanoparticles.” Chemosphere 153: 356–364. doi:10.1016/j.chemosphere.2016.03.060
  • Markiewicz, M., J. Kumirska, I. Lynch, M. Matzke, J. Köser, S. Bemowsky, D. Docter, R. H. Stauber, D. Westmeier, and S. Stolte. 2018. “Changing Environments and Biomolecule Coronas: Consequences and Challenges for the Design of Environmentally Acceptable Engineered Nanoparticles.” Green Chemistry, 20, 4133–4168. doi:10.1039/C8GC01171K
  • Martineau, N., J. E. Mclean, C. O. Dimkpa, D. W. Britt, and A. J. Anderson. 2014. “Components from Wheat Roots Modify the Bioactivity of ZnO and CuO Nanoparticles in a Soil Bacterium.” Environmental Pollution 187: 65–72. doi:10.1016/j.envpol.2013.12.022.
  • Matzke, M., K. Jurkschat, and T. Backhaus. 2014. “Toxicity of Differently Sized and Coated Silver Nanoparticles to the Bacterium Pseudomonas putida: Risks for the Aquatic Environment?’ Ecotoxicology 23 (5): 818–829. doi:10.1007/s10646-014-1222-x.
  • Maurer-Jones, M. A., I. L. Gunsolus, C. J. Murphy, and C. L. Haynes. 2013. “Toxicity of Engineered Nanoparticles in the Environment.” Analytical Chemistry 85 (6): 3036–3049. doi:10.1021/ac303636s.
  • Mcgivney, E., L. Han, A. Avellan, J. Vanbriesen, and K. B. Gregory. 2017. “Disruption of Autolysis in Bacillus subtilis Using TiO2 Nanoparticles.” Scientific Reports 7: 44308. doi:10.1038/srep44308
  • Mckee, M. S., and J. Filser. 2016. “Impacts of Metal-Based Engineered Nanomaterials on Soil Communities.” Environmental Science: Nano 3 (3): 506–533. doi:10.1039/C6EN00007J.
  • Mcquillan, J. S., and A. M. Shaw. 2014. “Differential Gene Regulation in the Ag Nanoparticle and Ag+-Induced Silver Stress Response in Escherichia Coli: A Full Transcriptomic Profile.” Nanotoxicology 8 (Supp1): 177–184. doi:10.3109/17435390.2013.870243.
  • Merrifield, R. C., C. Stephan, and J. Lead. 2017. “Determining the Concentration Dependent Transformations of Ag Nanoparticles in Complex Media: Using Sp-Icp-Ms and Au@Ag Core–Shell Nanoparticles as Tracers.” Environmental Science & Technology 51 (6): 3206–3213. doi:10.1021/acs.est.6b05178.
  • Mirzajani, F., A. Ghassempour, A. Aliahmadi, and M. A. Esmaeili. 2011. “Antibacterial Effect of Silver Nanoparticles on Staphylococcus aureus.” Research in Microbiology 162 (5): 542–549. doi:10.1016/j.resmic.2011.04.009.
  • Mitrano, D. M., and B. Nowack. 2017. “The Need for a Life-Cycle Based Aging Paradigm for Nanomaterials: Importance of Real-World Test Systems to Identify Realistic Particle Transformations.” Nanotechnology 28 (7): 072001. doi:10.1088/1361-6528/28/7/072001.
  • Moll, J., A. Okupnik, A. Gogos, K. Knauer, T. D. Bucheli, M. G. Van Der Heijden, and F. Widmer. 2016. “Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.” PLoS One 11 (5): e0155111. doi:10.1371/journal.pone.0155111.
  • Moore, T. L., L. Rodriguez-Lorenzo, V. Hirsch, S. Balog, D. Urban, C. Jud, B. Rothen-Rutishauser, M. Lattuada, and A. Petri-Fink. 2015. “Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions.” Chemical Society Reviews 44 (17): 6287–6305. doi:10.1039/C4CS00487F.
  • Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman. 2005. “The Bactericidal Effect of Silver Nanoparticles.” Nanotechnology 16 (10): 2346. doi:10.1088/0957-4484/16/10/059.
  • Mosselhy, D. A., M. A. El-Aziz, M. Hanna, M. A. Ahmed, M. M. Husien, and Q. Feng. 2015. “Comparative Synthesis and Antimicrobial Action of Silver Nanoparticles and Silver Nitrate.” Journal of Nanoparticle Research 17: 473. doi:10.1007/s11051-015-3279-8
  • Mudunkotuwa, I. A., and V. H. Grassian. 2015. “Biological and Environmental Media Control Oxide Nanoparticle Surface Composition: The Roles of Biological Components (Proteins and Amino Acids), Inorganic Oxyanions and Humic Acid.” Environmental Science: Nano 2 (5): 429–439. doi:10.1039/C4EN00215F.
  • Nangle, S. N., K. K. Sakimoto, P. A. Silver, and D. G. Nocera. 2017. “Biological-Inorganic Hybrid Systems as a Generalized Platform for Chemical Production.” Current Opinion in Chemical Biology 41: 107–113. doi:10.1016/j.cbpa.2017.10.023.
  • Nannipieri, P., J. Ascher, M. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. “Microbial Diversity and Soil Functions.” European Journal of Soil Science 54 (4): 655–670. doi:10.1046/j.1351-0754.2003.0556.x.
  • Nate, Z., M. J. Moloto, P. K. Mubiayi, and P. N. Sibiya. 2018. “Green Synthesis of Chitosan Capped Silver Nanoparticles and Their Antimicrobial Activity.” MRS Advances 3(42–43): 2505–2517. doi:10.1557/adv.2018.368
  • Neal, A. L., N. Kabengi, A. Grider, and P. M. Bertsch. 2012. “Can the Soil Bacterium Cupriavidus necator Sense ZnO Nanomaterials and Aqueous Zn2+ Differentially?’ Nanotoxicology 6 (4): 371–380. doi:10.3109/17435390.2011.579633.
  • Netala, V. R., V. S. Kotakadi, P. Bobbu, S. A. Gaddam, and V. Tartte. 2016. “Endophytic Fungal Isolate Mediated Biosynthesis of Silver Nanoparticles and Their Free Radical Scavenging Activity and anti Microbial Studies.” 3 Biotech 6(2): 132. doi:10.1007/s13205-016-0433-7
  • Nogueira, V., I. Lopes, T. Rocha-Santos, A. L. Santos, G. M. Rasteiro, F. Antunes, F. Gonçalves, et al. 2012. “Impact of Organic and Inorganic Nanomaterials in the Soil Microbial Community Structure.” Science of the Total Environment 424: 344–350. doi:10.1016/j.scitotenv.2012.02.041.
  • Nowack, B., and T. D. Bucheli. 2007. “Occurrence, Behavior and Effects of Nanoparticles in the Environment.” Environmental Pollution 150 (1): 5–22. doi:10.1016/j.envpol.2007.06.006.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles.” Environmental Health Perspectives 113 (7): 823–839. doi:10.1289/ehp.7339.
  • Ouyang, K., X.-Y. Yu, Y. Zhu, C. Gao, Q. Huang, and P. Cai. 2017. “Effects of Humic Acid on the Interactions between Zinc Oxide Nanoparticles and Bacterial Biofilms.” Environmental Pollution 231: 1104–1111. doi:10.1016/j.envpol.2017.07.003.
  • Pal, S., Y. K. Tak, and J. M. Song. 2007. “Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli.” Applied and Environmental Microbiology 73 (6): 1712–1720. doi:10.1128/AEM.02218-06.
  • Pan, B., and B. Xing. 2012. “Applications and Implications of Manufactured Nanoparticles in Soils: A Review.” European Journal of Soil Science 63 (4): 437–456. doi:10.1111/j.1365-2389.2012.01475.x.
  • Panáček, A., L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, et al. 2018. “Bacterial Resistance to Silver Nanoparticles and How to Overcome It.” Nature Nanotechnology 13 (1): 65. doi:10.1038/s41565-017-0013-y.
  • Parikh, R. Y., S. Singh, B. Prasad, M. S. Patole, M. Sastry, and Y. S. Shouche. 2008. “Extracellular Synthesis of Crystalline Silver Nanoparticles and Molecular Evidence of Silver Resistance from Morganella Sp.: Towards Understanding Biochemical Synthesis Mechanism.” Chembiochem 9 (9): 1415–1422. doi:10.1002/cbic.200700592.
  • Park, H.-J., S. Park, J. Roh, S. Kim, K. Choi, J. Yi, Y. Kim, and J. Yoon. 2013. “Biofilm-Inactivating Activity of Silver Nanoparticles: A Comparison with Silver Ions.” Journal of Industrial and Engineering Chemistry 19 (2): 614–619. doi:10.1016/j.jiec.2012.09.013.
  • Park, S., S. Lee, B. Kim, S. Lee, J. Lee, S. Sim, M. Gu, J. Yi, and J. Lee. 2012. “Toxic Effects of Titanium Dioxide Nanoparticles on Microbial Activity and Metabolic Flux.” Biotechnology and Bioprocess Engineering 17 (2): 276–282. doi:10.1007/s12257-010-0251-4.
  • Part, F., N. Berge, P. Baran, A. Stringfellow, W. Sun, S. Bartelt-Hunt, D. Mitrano, L. Li, P. Hennebert, and P. Quicker. 2018. “A Review of the Fate of Engineered Nanomaterials in Municipal Solid Waste Streams.” Waste Management. 75: 427–449. doi:10.1016/j.wasman.2018.02.012
  • Patil, M. P., Y. B. Seo, and G.-D. Kim. 2018. “Morphological Changes of Bacterial Cells upon Exposure of Silver-Silver Chloride Nanoparticles Synthesized Using Agrimonia Pilosa.” Microbial Pathogenesis 116: 84–90. doi:10.1016/j.micpath.2018.01.018.
  • Petrus, E., S. Tinakumari, L. Chai, A. Ubong, R. Tunung, N. Elexson, L. Chai, and R. Son. 2011. “A Study on the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Nano Colloidal Silver on Food-Borne Pathogens.” International Food Research Journal 18: 55–66.
  • Priester, J. H., Y. Ge, R. E. Mielke, A. M. Horst, S. C. Moritz, K. Espinosa, J. Gelb, et al. 2012. “Soybean Susceptibility to Manufactured Nanomaterials with Evidence for Food Quality and Soil Fertility Interruption.” Proceedings of the National Academy of Sciences 109 (37): E2451–E2456. doi:10.1073/pnas.1205431109.
  • Priester, J. H., A. Singhal, B. Wu, G. D. Stucky, and P. A. Holden. 2014. “Integrated Approach to Evaluating the Toxicity of Novel Cysteine-Capped Silver Nanoparticles to Escherichia coli and Pseudomonas aeruginosa.” The Analyst 139 (5): 954–963. doi:10.1039/C3AN01648J.
  • Priester, J. H., P. K. Stoimenov, R. E. Mielke, S. M. Webb, C. Ehrhardt, J. P. Zhang, G. D. Stucky, and P. A. Holden. 2009. “Effects of Soluble Cadmium Salts versus CdSe Quantum Dots on the Growth of Planktonic Pseudomonas aeruginosa.” Environmental Science & Technology 43 (7): 2589–2594. doi:10.1021/es802806n.
  • Quinteros, M., V. C. Aristizábal, P. Dalmasso, M. Paraje, and P. Páez. 2016. “Oxidative Stress Generation of Silver Nanoparticles in Three Bacterial Genera and Its Relationship with the Antimicrobial Activity.” Toxicology in Vitro 36: 216–223. doi:10.1016/j.tiv.2016.08.007.
  • Radhapriya, P., A. Ramachandran, R. Anandham, and S. Mahalingam. 2015. “Pseudomonas aeruginosa RRALC3 Enhances the Biomass, Nutrient and Carbon Contents of Pongamia Pinnata Seedlings in Degraded Forest Soil.” PLoS One 10 (10): e0139881. doi:10.1371/journal.pone.0139881.
  • Radzig, M. A., V. A. Nadtochenko, O. A. Koksharova, J. Kiwi, V. A. Lipasova, and I. A. Khmel. 2013. “Antibacterial Effects of Silver Nanoparticles on Gram-Negative Bacteria: Influence on the Growth and Biofilms Formation, Mechanisms of Action.” Colloids and Surfaces B: Biointerfaces 102: 300–306. doi:10.1016/j.colsurfb.2012.07.039.
  • Raghupathi, K. R., R. T. Koodali, and A. C. Manna. 2011. “Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles.” Langmuir 27 (7): 4020–4028. doi:10.1021/la104825u.
  • Rago, I., C. R. Chandraiahgari, M. P. Bracciale, G. De Bellis, E. Zanni, M. Cestelli Guidi, D. Sali, et al. 2014. “Zinc Oxide Microrods and Nanorods: Different Antibacterial Activity and Their Mode of Action against Gram-Positive Bacteria.” RSC Advances 4 (99): 56031–56040. doi:10.1039/C4RA08462D.
  • Raj, R. B., M. Umadevi, V. P. Parvathi, and R. Parimaladevi. 2016. “Effect of Potassium on Structural, Photocatalytic and Antibacterial Activities of ZnO Nanoparticles.” Advances in Natural Sciences: Nanoscience and Nanotechnology 7 (4): 045008. doi:10.1088/2043-6262/7/4/045008.
  • Ramalingam, B., T. Parandhaman, and S. K. Das. 2016. “Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria Viz. Escherichia coli and Pseudomonas aeruginosa.” ACS Applied Materials & Interfaces 8 (7): 4963–4976. doi:10.1021/acsami.6b00161.
  • Reddy Pullagurala, V. L., I. O. Adisa, S. Rawat, B. Kim, A. C. Barrios, I. A. Medina-Velo, J. A. Hernandez-Viezcas, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2018. “Finding the Conditions for the Beneficial Use of ZnO Nanoparticles towards Plants-a Review.” Environmental Pollution 241: 1175–1181. doi:10.1016/j.envpol.2018.06.036.
  • Reidy, B., A. Haase, A. Luch, K. A. Dawson, and I. Lynch. 2013. “Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications.” Materials 6 (6): 2295–2350. doi:10.3390/ma6062295.
  • Reinsch, B., C. Levard, Z. Li, R. Ma, A. Wise, K. Gregory, G. Brown, Jr, and G. Lowry. 2012. “Sulfidation of Silver Nanoparticles Decreases Escherichia coli Growth Inhibition.” Environmental Science & Technology 46 (13): 6992–7000. doi:10.1021/es203732x.
  • Riding, M. J., F. L. Martin, K. C. Jones, and K. T. Semple. 2015. “Carbon Nanomaterials in Clean and Contaminated Soils: Environmental Implications and Applications.” Soil 1 (1): 1. doi:10.5194/soil-1-1-2015.
  • Rong, Y., Y. Wang, Y. Guan, J. Ma, Z. Cai, G. Yang, and X. Zhao. 2017. “Pyrosequencing Reveals Soil Enzyme Activities and Bacterial Communities Impacted by Graphene and Its Oxides.” Journal of Agricultural and Food Chemistry 65 (42): 9191–9199. doi:10.1021/acs.jafc.7b03646.
  • Roumiantseva, M. L., E. E. Andronov, L. A. Sharypova, T. Dammann-Kalinowski, M. Keller, J. P. W. Young, and B. V. Simarov. 2002. “Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center.” Applied and Environmental Microbiology 68 (9): 4694–4697. doi:10.1128/AEM.68.9.4694-4697.2002.
  • Rudrappa, T., M. L. Biedrzycki, and H. P. Bais. 2008. “Causes and Consequences of Plant-Associated Biofilms.” FEMS Microbiology Ecology 64 (2): 153–166. doi:10.1111/j.1574-6941.2008.00465.x.
  • Ruotolo, R., E. Maestri, L. Pagano, M. Marmiroli, J. C. White, and N. Marmiroli. 2018. “Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective.” Environmental Science & Technology 52 (5): 2451–2467. doi:10.1021/acs.est.7b04121.
  • Ruparelia, J. P., A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji. 2008. “Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles.” Acta Biomaterialia 4 (3): 707–716. doi:10.1016/j.actbio.2007.11.006.
  • Saccá, M. L., A. B. Caracciolo, D. Lenola, and M. Grenni. P. 2017. ‘Ecosystem Services Provided by Soil Microorganisms.’In Soil Biological Communities and Ecosystem Resilience, 9–24. New York: Springer.
  • Sahu, N., D. Soni, B. Chandrashekhar, D. Satpute, S. Saravanadevi, B. Sarangi, and R. Pandey. 2016. “Synthesis of Silver Nanoparticles Using Flavonoids: Hesperidin, Naringin and Diosmin, and Their Antibacterial Effects and Cytotoxicity.” International Nano Letters 6 (3): 173–181. doi:10.1007/s40089-016-0184-9.
  • Sakimoto, K. K., S. J. Zhang, and P. Yang. 2016. “Cysteine–Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic–Biological Hybrid System.” Nano Letters 16 (9): 5883–5887. doi:10.1021/acs.nanolett.6b02740.
  • Saratale, R. G., I. Karuppusamy, G. D. Saratale, A. Pugazhendhi, G. Kumar, Y. Park, G. S. Ghodake, R. N. Bharagava, J. R. Banu, and H. S. Shin. 2018. “A Comprehensive Review on Green Nanomaterials Using Biological Systems: Recent Perception and Their Future Applications.” Colloids and Surfaces B: Biointerfaces 170: 20. doi:10.1016/j.colsurfb.2018.05.045.
  • Saravanakumar, A., M. M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H. T. Jang. 2017. “Low-Cost and Eco-Friendly Green Synthesis of Silver Nanoparticles Using Prunus japonica (Rosaceae) Leaf Extract and Their Antibacterial, Antioxidant Properties.” Artificial Cells, Nanomedicine, and Biotechnology 45 (6): 1165–1171. doi:10.1080/21691401.2016.1203795.
  • Schmid, O., and T. Stoeger. 2016. “Surface Area Is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung.” Journal of Aerosol Science 99: 133–143. doi:10.1016/j.jaerosci.2015.12.006.
  • Shah, S. N., S. I. Ali, S. R. Ali, M. Naeem, Y. Bibi, S. R. Ali, S. M. Raza, Y. Khan, and S. K. Sherwani. 2016. “Synthesis and Characterization of Zinc Oxide Nanoparticles for Antibacterial Applications.” Journal of Basic and Applied Sciences 12: 205–210.
  • Shameer, S., and T. Prasad. 2018. “Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Practices with Special Reference to Biotic and Abiotic Stresses.” Plant Growth Regulation 84(3): 603–615. doi:10.1007/s10725-017-0365-1
  • Sheng, Z., J. D. Van Nostrand, J. Zhou, and Y. Liu. 2018. “Contradictory Effects of Silver Nanoparticles on Activated Sludge Wastewater Treatment.” Journal of Hazardous Materials 341: 448–456. doi:10.1016/j.jhazmat.2017.07.051.
  • Shin, Y.-J., J. I. Kwak, and Y.-J. An. 2012. “Evidence for the Inhibitory Effects of Silver Nanoparticles on the Activities of Soil Exoenzymes.” Chemosphere 88 (4): 524–529. doi:10.1016/j.chemosphere.2012.03.010.
  • Shivananda, C. S., S. Asha, R. Madhukumar, S. Satish, B. Narayana, K. Byrappa, Y. Wang, and Y. Sangappa. 2016. “Biosynthesis of Colloidal Silver Nanoparticles: Their Characterization and Potential Antibacterial Activity.” Macromolecular Research 24 (8): 684–690. doi:10.1007/s13233-016-4086-5.
  • Simonin, M., J. P. Guyonnet, J. M. Martins, M. Ginot, and A. Richaume. 2015. “Influence of Soil Properties on the Toxicity of TiO2 Nanoparticles on Carbon Mineralization and Bacterial Abundance.” Journal of Hazardous Materials 283: 529–535. doi:10.1016/j.jhazmat.2014.10.004.
  • Simonin, M., and A. Richaume. 2015. “Impact of Engineered Nanoparticles on the Activity, Abundance, and Diversity of Soil Microbial Communities: A Review.” Environmental Science and Pollution Research 22 (18): 13710–13723. doi:10.1007/s11356-015-4171-x.
  • Singh, R., U. U. Shedbalkar, S. A. Wadhwani, and B. A. Chopade. 2015. “Bacteriagenic Silver Nanoparticles: Synthesis, Mechanism, and Applications.” Applied Microbiology and Biotechnology 99 (11): 4579–4593. doi:10.1007/s00253-015-6622-1.
  • Sinha, R., R. Karan, A. Sinha, and S. Khare. 2011. “Interaction and Nanotoxic Effect of ZnO and Ag Nanoparticles on Mesophilic and Halophilic Bacterial Cells.” Bioresource Technology 102 (2): 1516–1520. doi:10.1016/j.biortech.2010.07.117.
  • Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. 2015. “Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.” Nano-Micro Letters 7 (3): 219–242. doi:10.1007/s40820-015-0040-x.
  • Skandalis, N., A. Dimopoulou, A. Georgopoulou, N. Gallios, D. Papadopoulos, D. Tsipas, I. Theologidis, N. Michailidis, and M. Chatzinikolaidou. 2017. “The Effect of Silver Nanoparticles Size, Produced Using Plant Extract from Arbutus Unedo, on Their Antibacterial Efficacy.” Nanomaterials 7(7): 178. doi:10.3390/nano7070178
  • Sondi, I., and B. Salopek-Sondi. 2004. “Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria.” Journal of Colloid and Interface Science 275 (1): 177–182. doi:10.1016/j.jcis.2004.02.012.
  • Soni, D., A. Bafana, D. Gandhi, S. Sivanesan, and R. A. Pandey. 2014. “Stress Response of Pseudomonas Species to Silver Nanoparticles at the Molecular Level.” Environmental Toxicology and Chemistry 33 (9): 2126–2132. doi:10.1002/etc.2670.
  • Soni, D., D. Gandhi, P. Tarale, A. Bafana, R. Pandey, and S. Sivanesan. 2017. “Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (Hl-60), and Blood Cells.” Biological Trace Element Research 178(2): 218–227. doi:10.1007/s12011-016-0921-y
  • Stan, M., A. Popa, D. Toloman, T.-D. Silipas, and D. C. Vodnar. 2016. “Antibacterial and Antioxidant Activities of ZnO Nanoparticles Synthesized Using Extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum.” Acta Metallurgica Sinica (English Letters) 29 (3): 228–236. doi:10.1007/s40195-016-0380-7.
  • Sturikova, H., O. Krystofova, D. Huska, and V. Adam. 2018. “Zinc, Zinc Nanoparticles and Plants.” Journal of Hazardous Materials 349: 101–110. doi:10.1016/j.jhazmat.2018.01.040.
  • Sun, T. Y., F. Gottschalk, K. Hungerbühler, and B. Nowack. 2014. “Comprehensive Probabilistic Modelling of Environmental Emissions of Engineered Nanomaterials.” Environmental Pollution 185: 69–76. doi:10.1016/j.envpol.2013.10.004.
  • Sun, T. Y., D. M. Mitrano, N. A. Bornhöft, M. Scheringer, K. Hungerbühler, and B. Nowack. 2017. “Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials.” Environmental Science & Technology 51 (5): 2854–2863. doi:10.1021/acs.est.6b05702.
  • Suresh, A. K., M. J. Doktycz, W. Wang, J.-W. Moon, B. Gu, H. M. Meyer, D. K. Hensley, D. P. Allison, T. J. Phelps, and D. A. Pelletier. 2011. “Monodispersed Biocompatible Silver Sulfide Nanoparticles: Facile Extracellular Biosynthesis Using the Γ-Proteobacterium, Shewanella oneidensis.” Acta Biomaterialia 7 (12): 4253–4258. doi:10.1016/j.actbio.2011.07.007.
  • Suresh, A. K., D. A. Pelletier, and M. J. Doktycz. 2013. “Relating Nanomaterial Properties and Microbial Toxicity.” Nanoscale 5 (2): 463–474. doi:10.1039/C2NR32447D.
  • Suresh, A. K., D. A. Pelletier, W. Wang, J.-W. Moon, B. Gu, N. P. Mortensen, D. P. Allison, D. C. Joy, T. J. Phelps, and M. J. Doktycz. 2010. “Silver Nanocrystallites: Biofabrication Using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-Negative and Gram-Positive Bacteria.” Environmental Science & Technology 44 (13): 5210–5215. doi:10.1021/es903684r.
  • Syed, B., N. P. M.N, D. B.L, M. K. K, Y. S, and S. S. 2016. “Synthesis of Silver Nanoparticles by Endosymbiont Pseudomonas fluorescens Ca 417 and Their Bactericidal Activity.” Enzyme and Microbial Technology 95: 128–136. doi:10.1016/j.enzmictec.2016.10.004.
  • Tang, J., Y. Wu, S. Esquivel-Elizondo, S. J. Sørensen, and B. E. Rittmann. 2018. “How Microbial Aggregates Protect against Nanoparticle Toxicity.” Trends in Biotechnology. doi:10.1016/j.tibtech.2018.06.009
  • Tejamaya, M., I. Römer, R. C. Merrifield, and J. R. Lead. 2012. “Stability of Citrate, Pvp, and Peg Coated Silver Nanoparticles in Ecotoxicology Media.” Environmental Science & Technology 46 (13): 7011–7017. doi:10.1021/es2038596.
  • Thomassen, L. C., A. Aerts, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, D. Napierska, P. H. Hoet, C. E. Kirschhock, and J. A. Martens. 2010. “Synthesis and Characterization of Stable Monodisperse Silica Nanoparticle Sols for in Vitro Cytotoxicity Testing.” Langmuir 26 (1): 328–335. doi:10.1021/la902050k.
  • Thuptimdang, P., T. Limpiyakorn, and E. Khan. 2017. “Dependence of Toxicity of Silver Nanoparticles on Pseudomonas putida Biofilm Structure.” Chemosphere 188: 199–207. doi:10.1016/j.chemosphere.2017.08.147.
  • Thuptimdang, P., T. Limpiyakorn, J. Mcevoy, B. M. Prüß, and E. Khan. 2015. “Effect of Silver Nanoparticles on Pseudomonas putida Biofilms at Different Stages of Maturity.” Journal of Hazardous Materials 290: 127–133. doi:10.1016/j.jhazmat.2015.02.073.
  • Timmusk, S., G. Seisenbaeva, and L. Behers. 2018. “Titania (TiO2) Nanoparticles Enhance the Performance of Growth-Promoting Rhizobacteria.” Scientific Reports 8(1): 617. doi:10.1038/s41598-017-18939-x
  • Torsvik, V., and L. Øvreås. 2002. “Microbial Diversity and Function in Soil: From Genes to Ecosystems.” Current Opinion in Microbiology 5 (3): 240–245. doi:12057676.
  • Tripathi, D. K., Tripathi, A. Shweta, S. Singh, S. Y. Vishwakarma, K. Yadav, G. Sharma, S, et al. 2017. “Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review.” Frontiers in Microbiology 8(7). doi:10.3389/fmicb.2017.00007
  • Unrine, J., P. Bertsch, and S. Hunyadi. 2008. “Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments.” Nanoscience and Nanotechnology: Environmental and Health Impacts edited by Vicki H. Grassian 345–366. doi:10.1002/9780470396612.ch14
  • Vázquez Núñez, E., and G. De La Rosa-Álvarez. 2018. “Environmental Behavior of Engineered Nanomaterials in Terrestrial Ecosystems: Uptake, Transformation and Trophic Transfer.” Current Opinion in Environmental Science & Health 6: 42–46. doi:10.1016/j.coesh.2018.07.011.
  • Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A. Nasrulhaq Boyce. 2016. “Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review.” Molecules 21 (5): 573. doi:10.3390/molecules21050573.
  • Verma, A., and F. Stellacci. 2010. ‘Effect of Surface Properties on Nanoparticle-cell Interactions.” Small (Weinheim an Der Bergstrasse, Germany) 6 (1): 12–21. doi:10.1002/smll.200901158.
  • Verma, S. K., A. K. Das, M. K. Patel, A. Shah, V. Kumar, and S. Gantait. 2018. “Engineered Nanomaterials for Plant Growth and Development: A Perspective Analysis.” Science of the Total Environment 630: 1413–1435. doi:10.1016/j.scitotenv.2018.02.313.
  • Vithanage, M., M. Seneviratne, M. Ahmad, B. Sarkar, and Y. S. Ok. 2017. “Contrasting Effects of Engineered Carbon Nanotubes on Plants: A Review.” Environmental Geochemistry and Health 39 (6): 1421–1439. doi:10.1007/s10653-017-9957-y.
  • Wagner, G., V. Korenkov, J. D. Judy, and P. M. Bertsch. 2016. “Nanoparticles Composed of Zn and ZnO Inhibit Peronospora Tabacina Spore Germination in Vitro and P. tabacina Infectivity on Tobacco Leaves.” Nanomaterials 6 (3): 50. doi:10.3390/nano6030050.
  • Wang, F., X. Liu, Z. Shi, R. Tong, C. A. Adams, and X. Shi. 2016. “Arbuscular Mycorrhizae Alleviate Negative Effects of Zinc Oxide Nanoparticle and Zinc Accumulation in Maize Plants – A Soil Microcosm Experiment.” Chemosphere 147: 88–97. doi:10.1016/j.chemosphere.2015.12.076.
  • Wang, P., N. W. Menzies, P. G. Dennis, J. Guo, C. Forstner, R. Sekine, E. Lombi, P. Kappen, P. M. Bertsch, and P. M. Kopittke. 2016. “Silver Nanoparticles Entering Soils via the Wastewater–Sludge–Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.” Environmental Science & Technology. 50 (15), pp 8274–8281. doi:10.1021/acs.est.6b01180
  • Wang, P., N. W. Menzies, E. Lombi, R. Sekine, F. P. C. Blamey, M. C. Hernandez-Soriano, M. Cheng, P. Kappen, W. J. Peijnenburg, and C. Tang. 2015. “Silver Sulfide Nanoparticles (Ag2S-NPs) Are Taken up by Plants and Are Phytotoxic.” Nanotoxicology 9(8):1041–1049. doi:10.3109/17435390.2014.999139
  • Whitley, A. R., C. Levard, E. Oostveen, P. M. Bertsch, C. J. Matocha, F. von der Kammer, J. M. Unrine. 2013. “Behavior of Ag Nanoparticles in Soil: Effects of Particle Surface Coating, Aging and Sewage Sludge Amendment.” Environmental Pollution 182: 141–1479. doi:10.1016/j.envpol.2013.06.027.
  • Wirth, S. M., G. V. Lowry, and R. D. Tilton. 2012. “Natural Organic Matter Alters Biofilm Tolerance to Silver Nanoparticles and Dissolved Silver.” Environmental Science & Technology 46 (22): 12687–12696. doi:10.1021/es301521p.
  • Wong, S. W. Y., P. T. Y. Leung, A. B. Djurišić, and K. M. Y. Leung. 2010. “Toxicities of Nano Zinc Oxide to Five Marine Organisms: Influences of Aggregate Size and Ion Solubility.” Analytical and Bioanalytical Chemistry 396 (2): 609–618. doi:10.1007/s00216-009-3249-z.
  • Xiu, Z.-M., Q.-B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez. 2012. “Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles.” Nano Letters 12 (8): 4271–4275. doi:10.1021/nl301934w.
  • Yan, X., B. He, L. Liu, G. Qu, J. Shi, L. Hu, and G. Jiang. 2018. “Antibacterial Mechanism of Silver Nanoparticles in Pseudomonas aeruginosa: Proteomics Approach.” Metallomics 10 (4): 557–564. doi:10.1039/C7MT00328E.
  • Yang, Y., and P. J. Alvarez. 2015. “Sublethal Concentrations of Silver Nanoparticles Stimulate Biofilm Development.” Environmental Science & Technology Letters 2 (8): 221–226. doi:10.1021/acs.estlett.5b00159.
  • Yoon, K.-Y., J. H. Byeon, J.-H. Park, and J. Hwang. 2007. “Susceptibility Constants of Escherichia coli and Bacillus subtilis to Silver and Copper Nanoparticles.” Science of the Total Environment 373 (2–3): 572–575. doi:10.1016/j.scitotenv.2006.11.007.
  • Yoon, S.-J., J. I. Kwak, W.-M. Lee, P. A. Holden, and Y.-J. An. 2014. “Zinc Oxide Nanoparticles Delay Soybean Development: A Standard Soil Microcosm Study.” Ecotoxicology and Environmental Safety 100: 131–137. doi:10.1016/j.ecoenv.2013.10.014.
  • Yuan, Y.-G., Q.-L. Peng, and S. Gurunathan. 2017. “Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy.” International Journal of Molecular Sciences 18 (3): 569. doi:10.3390/ijms18030569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.