485
Views
22
CrossRef citations to date
0
Altmetric
Article

A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment

, ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 289-310 | Received 02 Sep 2020, Accepted 11 Nov 2020, Published online: 14 Dec 2020

References

  • Afantitis, Antreas, Georgia Melagraki, Panagiotis Isigonis, Andreas Tsoumanis, Dimitra Danai Varsou, Eugenia Valsami-Jones, Anastasios Papadiamantis, et al. 2020. “NanoSolveIT Project: Driving Nanoinformatics Research to Develop Innovative and Integrated Tools for in Silico Nanosafety Assessment.” Computational and Structural Biotechnology Journal 18: 583–602. doi:10.1016/j.csbj.2020.02.023.
  • Ammar, Ammar, Serena Bonaretti, Laurent Winckers, Joris Quik, Martine Bakker, Dieter Maier, Iseult Lynch, Jeaphianne van Rijn, and Egon Willighagen. 2020. “A Semi-Automated Workflow for FAIR Maturity Indicators in the Life Sciences.” Nanomaterials 10 (10): 2068. doi:10.3390/nano10102068.
  • Ankley, Gerald T., Richard S. Bennett, Russell J. Erickson, Dale J. Hoff, Michael W. Hornung, Rodney D. Johnson, David R. Mount, et al. 2010. “Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment.” Environmental Toxicology and Chemistry 29 (3): 730–741. doi:10.1002/etc.34.
  • AOP 173. 2019. Substance Interaction With the Lung Resident Cell Membrane Components Leading to Lung Fibrosis. Available at: https://aopwiki.org/aops/173
  • Becker, R. A., V. Dellarco, J. Seed, J. M. Kronenberg, B. Meek, J. Foreman, C. Palermo, et al. 2017. “Quantitative Weight of Evidence to Assess Confidence in Potential Modes of Action.” Regulatory Toxicology and Pharmacology : RTP (86): 205–220. doi:10.1016/j.yrtph.2017.02.017.
  • Boyadzhiev, Andrey, Colleen Trevithick-Sutton, Dongmei Wu, Nathalie Decan, Marc Bazin, Girish M. Shah, and Sabina Halappanavar. 2020. “Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomaterial Detection in Consumer Care Products and in Skin following Dermal Exposure.” Chemical Research in Toxicology 33 (5): 1266–1278. doi:10.1021/acs.chemrestox.0c00090.
  • Braakhuis, H. M., M. V. D. Z. Park, I. Gosens, W. H. De Jong, and F. R. Cassee. 2014. “Physicochemical Characteristics of Nanomaterials That Affect Pulmonary Inflammation.” Particle and Fibre Toxicology 11 (18): 18–25. doi:10.1186/1743-8977-11-18.
  • Carusi, A., M. R. Davies, G. De Grandis, B. I. Escher, G. Hodges, K. M. Y. Leung, M. Whelan, C. Willett, and G. T. Ankley. 2018. “Harvesting the Promise of AOPs: An Assessment and Recommendations.” Science of the Total Environment 1: 1542–1556.
  • Cho, W. S., R. Duffin, C. A. Poland, S. E. M. Howie, W. MacNee, M. Bradley, I. L. Megson, and K. Donaldson. 2010. “Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing.” Environmental Health Perspectives 118 (12): 1699–1706. doi:10.1289/ehp.1002201.
  • Choi, Jae-Young, Gurumurthy Ramachandran, and Milind Kandlikar. 2009. “The Impact of Toxicity Testing Costs on Nanomaterial Regulation.” Environmental Science & Technology 43 (9): 3030–3034. doi:10.1021/es802388s.
  • Crump, K. S. 1995. “Calculation of Benchmark Doses from Continuous Data.” Risk Analysis 15 (1): 79–89. doi:10.1111/j.1539-6924.1995.tb00095.x.
  • Crump, K. S. 2002. “Critical Issues in Benchmark Calculations from Continuous Data.” Critical Reviews Toxicology 32 (3): 133–153.
  • Danielsen, P. H., K. B. Knudsen, J. Štrancar, P. Umek, T. Koklic, M. Garvas, E. Vanhala, et al. 2020. “Effects of Physicochemical Properties of TiO2 Nanomaterials for Pulmonary Inflammation, Acute Phase Response and Alveolar Proteinosis in Intratracheally Exposed Mice.” Toxicology and Applied Pharmacology 386: 114830. doi:10.1016/j.taap.2019.114830.
  • Delrue, N., M. Sachana, Y. Sakurantani, A. Gourmelon, E. Leinala, and R. Diderich. 2016. “The Adverse Outcome Pathway Concept: A Basis for Developing Regulatory Decision-making Tools.” Alternatives to Laboratory Animals 44 (5): 417–429.
  • Drasler, B., P. Sayre, K. G. Steinhäuser, A. Petri-Fink, and B. Rothen-Rutishauser. 2017. “In Vitro Approaches to Assess the Hazard of Nanomaterials.” NanoImpact 8: 99–116. doi:10.1016/j.impact.2017.08.002.
  • Drew, N., E. Kuempel, Y. Pei, and F. Yang. 2017. “A Quantitative Framework to Group Nanoscale and Microscale Particles by Hazard Potency to Derive Occupational Exposure Limits: Proof of Concept Evaluation.” Regulatory Toxicology and Pharmacology : RTP 89: 253–267. doi:10.1016/j.yrtph.2017.08.003.
  • Ede, J. D., V. Lobaskin, U. Vogel, I. Lynch, S. Halappanavar, S. H. Doak, M. G. Roberts, and J. A. Shatkin. 2020. “Translating Scientific Advances in the AOP Framework to Decision Making for Nanomaterials.” Nanomaterials 10 (6): 1229. doi:10.3390/nano10061229.
  • European Commission 2011. “Commission recommendation of 18 October 2011 on the definition of a nanomaterial.” 2011/696/EU. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696
  • Garner, K. L., and A. A. Keller. 2014. “Emerging Patterns for Engineered Nanomaterials in the Environment: A Review of Fate and Toxicity Studies.” Journal Nanoparticle Research 16 (8): 2503–2531.
  • Geitner, N. K., C. O. Hendren, G. Cornelis, R. Kaegi, J. R. Lead, G. V. Lowry, I. Lynch, et al. 2020. “Harmonizing across Environmental Nanomaterial Testing Media for Increased Comparability of Nanomaterial Datasets.” Environmental Science: Nano 7 (1): 13–36. doi:10.1039/C9EN00448C.
  • Gerloff, K., B. Landesmann, A. Worth, S. Munn, T. Palosaari, and M. Whelan. 2017. “The Adverse Outcome Pathway Approach in Nanotoxicology.” Computational Toxicology (1): 3–11. doi:10.1016/j.comtox.2016.07.001.
  • Hafner, A., J. Lovrić, G. P. Lakoš, and I. Pepić. 2014. “Nanotherapeutics in the EU: An Overview on Current State and Future Directions.” International Journal Nanomedicine 9: 1005–1023.
  • Halappanavar, Sabina, Anne Thoustrup Saber, Nathalie Decan, Keld Alstrup Jensen, Dongmei Wu, Nicklas Raun Jacobsen, Charles Guo, et al. 2015. “Transcriptional Profiling Identifies Physicochemical Properties of Nanomaterials That Are Determinants of the in Vivo Pulmonary Response.” Environmental and Molecular Mutagenesis 56 (2): 245–264. doi:10.1002/em.21936.
  • Halappanavar, Sabina, Sybille van den Brule, Penny Nymark, Laurent Gaté, Carole Seidel, Sarah Valentino, Vadim Zhernovkov, et al. 2020. “Adverse Outcome Pathways as a Tool for the Design of Testing Strategies to Support the Safety Assessment of Emerging Advanced Materials at the Nanoscale.” Particle and Fibre Toxicology 17 (1): 16. doi:10.1186/s12989-020-00344-4.
  • Halappanavar, S., J. D. Ede, J. A. Shatkin, and H. F. Krug. 2019. “A Systematic Process for Identifying Key Events for Advancing the Development of Nanomaterial Relevant Adverse Outcome Pathways.” NanoImpact 15: 100178. doi:10.1016/j.impact.2019.100178.
  • Halappanavar, S., L. Rahman, J. Nikota, S. S. Poulsen, Y. Ding, P. Jackson, H. Wallin, O. Schmid, U. Vogel, and A. Williams. 2019. “Ranking of Nanomaterial Potency to Induce Pathway Perturbations Associated with Lung Responses.” NanoImpact 14: 100158. doi:10.1016/j.impact.2019.100158.
  • Heller, A., K. Jarvis, S. S. Coffman. 2018. “Association of Type 2 Diabetes with Submicron Titanium Dioxide Crystals in the Pancreas.” Chemical Research in Toxicology 31 (6): 506. doi:10.1021/acs.chemrestox.8b00047.
  • Hirsch, C., M. Roesslein, H. F. Krug, and P. Wick. 2011. “Nanomaterial Cell Interactions: Are Current In Vitro Tests Reliable?” Nanomedicine (London, England) 6 (5): 837–847. doi:10.2217/nnm.11.88.
  • Johnston, H., G. Pojana, S. Zuin, N. R. Jacobsen, P. Møller, S. Loft, M. Semmler-Behnke, et al. 2013. “Engineered Nanomaterial Risk. Lessons Learnt from Completed Nanotoxicology Studies: Potential Solutions to Current and Future Challenges.” Critical Reviews in Toxicology 43 (1): 1–20. doi:10.3109/10408444.2012.738187.
  • Kinaret, P. A. S., A. Serra, A. Federico, P. Kohonen, P. Nymark, I. Liampa, M. K. Ha, et al. 2020. “Transcriptomics in Toxicogenomics, Part 1: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects.” Nanomaterials 10 (4): 750. doi:10.3390/nano10040750.
  • Knapen, Dries, Michelle M. Angrish, Marie C. Fortin, Ioanna Katsiadaki, Marc Leonard, Luigi Margiotta-Casaluci, Sharon Munn, et al. 2018. “Adverse Outcome Pathway Networks I: Development and Applications.” Environmental Toxicology and Chemistry 37 (6): 1723–1733. doi:10.1002/etc.4125.
  • Knudsen, K. B., T. Berthing, P. Jackson, S. P. Poulsen, A. Mortensen, N. R. Jacobsen, V. Skaug, et al. 2019. “Physicochemical Predictors of Multi-Walled Carbon Nanotube-Induced Pulmonary Histopathology and Toxicity One Year after Pulmonary Deposition of 11 Different Multi-Walled Carbon Nanotubes in Mice.” Basic & Clinical Pharmacology & Toxicology 124 (2): 211–227. doi:10.1111/bcpt.13119.
  • Krug, H. F. 2014. “Nanosafety Research-Are We on the Right Track?” Angewandte Chemie (International ed. in English) 53 (46): 12304–12319. doi:10.1002/anie.201403367.
  • Krug, H. F. 2018. “The Uncertainty with Nanosafety: Validity and Reliability of Published Data.” Colloids and Surfaces. B, Biointerfaces 172: 113–117. doi:10.1016/j.colsurfb.2018.08.036.
  • Krug, Harald, Nils Bohmer, Dana Kühnel, Clarissa Marquardt, Katja Nau, and Christoph Steinbach. 2018. “The DaNa2.0 Knowledge Base Nanomaterials—an Important Measure Accompanying Nanomaterials Development.” Nanomaterials 8 (4): 204. doi:10.3390/nano8040204.
  • Kühnel, D., C. Marquardt, K. Nau, H. F. Krug, B. Mathes, and C. Steinback. 2014. “Environmental Impacts of Nanomaterials: Providing Comprehensive Information on Exposure, Transport and Ecotoxicity—the Project DaNa2.0.” Environmental Science Europe 26: 21.
  • Labib, S., A. Williams, C. L. Yauk, J. K. Nikota, H. Wallin, U. Vogel, and S. Halappanavar. 2016. “Nano-Risk Science: Applicaation of Toxicogenomics in an Adverse Outcome Pathway Framework for Risk Assessment of Multi-Walled Carbon Nanotubes.” Particle & Fibre Toxicology 13 (15): 1–17.
  • Laux, Peter, Jutta Tentschert, Christian Riebeling, Albert Braeuning, Otto Creutzenberg, Astrid Epp, Valérie Fessard, et al. 2018. “Nanomaterials: Certain Aspects of Application, Risk Assessment and Risk Communication.” Archives of Toxicology 92 (1): 121–141. doi:10.1007/s00204-017-2144-1.
  • Liberati, Alessandro, Douglas G. Altman, Jennifer Tetzlaff, Cynthia Mulrow, Peter C. Gøtzsche, John P. A. Ioannidis, Mike Clarke, P. J. Devereaux, Jos Kleijnen, and David Moher. 2009. “The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration.” Annals of Internal Medicine 151 (4): W65–W94. doi:10.7326/0003-4819-151-4-200908180-00136.
  • Maynard, A. D., D. B. Warheit, and M. A. Philbert. 2011. “The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond.” Toxicological Sciences 120 (Supplement 1): S109–S129. doi:10.1093/toxsci/kfq372.
  • Morimoto, Y., H. Izumi, and E. Kuroda. 2014. “Significance of Persistent Inflammation in Respiratory Disorders Induced by Nanoparticles.” Journal of Immunology Research 2014: 962871. doi:10.1155/2014/962871.
  • Nagai, H., Y. Okazaki, S. H. Chew, N. Misawa, Y. Yamashita, S. Akatsuka, T. Ishihara, et al. 2011. “Diameter and Rigidity of Multiwalled Carbon Nanotubes Are Critical Factors in Mesothelial Injury and Carcinogenesis.” Proceedings of the National Academy of Sciences 108 (49): E1330–1338. doi:10.1073/pnas.1110013108.
  • Nel, A., T. Xia, L. Madler, and N. Li. 2006. “Toxic Potential of Materials at the Nanolevel.” Science (New York, N.Y.) 311 (5761): 622–627. doi:10.1126/science.1114397.
  • Nel, A., T. Xia, H. Meng, X. Wang, S. Lin, Z. Ji, and H. Zhang. 2013. “Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening.” Accounts of Chemical Research 46 (3): 607–721. doi:10.1021/ar300022h.
  • Nikota, J., A. Williams, C. L. Yauk, H. Wallin, U. Vogel, and S. Halappanavar. 2016. “Meta-Analysis of Transcriptomic Responses as a Means to Identify Pulmonary Disease Outcomes for Engineered Nanomaterials.” Particle and Fibre Toxicology 13 (25): 2–10. doi:10.1186/s12989-016-0137-5.
  • NIOSH 2011. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2011-160.
  • NIOSH 2013. Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2013-14.
  • NRC 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press.
  • OECD 2016. OECD Series on Adverse Outcome Pathways Number 1: Users’ Handbook Supplement to the Guidance Document for Developing and Assessing Adverse Outcome Pathways. Paris: OECD Publishing.
  • Papadiamantis, A. G., F. C. Klaessig, T. E. Exner, S. Hofer, N. Hofstaetter, M. Himly, M. A. Williams, et al. 2020. “Metadata Stewardship in Nanosafety Research: Community-Driven Organisation of Metadata Schemas to Support FAIR Nanoscience Data.” Nanomaterials 10 (10): 2033. doi:10.3390/nano10102033.
  • Pollesch, N. L., D. L. Villeneuve, and J. M. O’Brien. 2019. “Extracting and Benchmarking Emerging Adverse Outcome Pathway Knowledge.” Toxicological Sciences : An Official Journal of the Society of Toxicology 168 (2): 349–364. doi:10.1093/toxsci/kfz006.
  • Poulsen, Sarah S., Petra Jackson, Kirsten Kling, Kristina B. Knudsen, Vidar Skaug, Zdenka O. Kyjovska, Birthe L. Thomsen, et al. 2016. “Multi-Walled Carbon Nanotube Physicochemical Properties Predict Pulmonary Inflammation and Genotoxicity.” Nanotoxicology 10 (9): 1263–1275. doi:10.1080/17435390.2016.1202351.
  • Poulsen, Sarah S., Kristina B. Knudsen, Petra Jackson, Ingrid E. K. Weydahl, Anne T. Saber, Håkan Wallin, and Ulla Vogel. 2017. “Multi-Walled Carbon Nanotube-Physicochemical Properties Predict the Systemic Acute Phase Response Following Pulmonary Exposure in Mice.” PLoS One 12 (4): e0174167. doi:10.1371/journal.pone.0174167.
  • Rahman, L., N. R. Jacobsen, S. A. Aziz, D. Wu, A. Williams, C. L. Yauk, P. White, H. Wallin, U. Vogel, and S. Halappanavar. 2017. “Multi-Walled Carbon Nanotube-Induced Genotoxic, Inflammatory and Pro-fibrotic Responses in Mice: Investigating the Mechanisms of Pulmonary Carcinogenesis.” Mutation Research 823: 28–44. doi:10.1016/j.mrgentox.2017.08.005.
  • Saber, A. T., S. S. Poulsen, N. Hadrup, N. R. Jacobsen, and U. Vogel. 2019. “Commentary: The Chronic Inhalation Study in Rats for Assessing Lung Cancer Risk May Be Better than Its Reputation.” Particle and Fibre Toxicology 16 (1): 44. doi:10.1186/s12989-019-0330-4.
  • Schmid, O., and T. Stoeger. 2016. “Surface Area is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung.” Journal of Aerosol Science 99: 133–143. doi:10.1016/j.jaerosci.2015.12.006.
  • Shatkin, J. A., K. J. Ong, C. Beaudrie, A. J. Clippinger, C. O. Hendren, L. T. Haber, M. Hill, et al. 2016. “Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.” Risk Analysis : An Official Publication of the Society for Risk Analysis 36 (8): 1520–1537. doi:10.1111/risa.12683.
  • Spinu, N., M. T. D. Cronin, S. J. Enoch, J. C. Madden, and A. P. Worth. 2020. “Quantitative Adverse Outcome Pathway (qAOP) Models for Toxicity Prediction.” Archives of Toxicology 94 (5): 1497–1510. doi:10.1007/s00204-020-02774-7.
  • US EPA 2012. Benchmark Dose Technical Guidance. Washington, DC: U.S. Environmental Protection Agency. EPA/100/R-12/001.
  • Villeneuve, D. L., M. M. Angrish, M. C. Fortin, I. Katsiadaki, M. Leonard, and L. Margiotta-Casaluci. 2018a. “Adverse Outcome Pathway Networks II: Network Analytics.” Environmental. Toxicology and Chemistry 37: 1734–1748.
  • Villeneuve, D. L., B. Landesmann, P. Allavena, N. Ashley, A. Bal-Price, E. Corsini, S. Halappanavar, et al. 2018b. “Representing the Process of Inflammation as Key Events in Adverse Outcome Pathways.” Toxicological Sciences : An Official Journal of the Society of Toxicology 163 (2): 346–352. doi:10.1093/toxsci/kfy047.
  • Vinken, M. 2013. “The Adverse Outcome Pathway Concept: A Pragmatic Tool in Toxicology.” Toxicology 312: 158–165. doi:10.1016/j.tox.2013.08.011.
  • Wagner, S., A. Gondikas, E. Neubauer, T. Hofmann, and F. Von der Kammer. 2014. “Spot the Difference: Engineered and Natural Nanoparticles in the Environment-Release, Behavior, and Fate.” Angewandte Chemie (International ed. in English) 53 (46): 12398–12419. doi:10.1002/anie.201405050.
  • Warheit, D. B., T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes. 2007. “Pulmonary Toxicity Study in Rats with Three Forms of ultrafine-TiO2 Particles: Differential Responses Related to Surface Properties.” Toxicology 230 (1): 90–104. doi:10.1016/j.tox.2006.11.002.
  • Wohlleben, Wendel, Bryan Hellack, Carmen Nickel, Monika Herrchen, Kerstin Hund-Rinke, Katja Kettler, Christian Riebeling, et al. 2019. “The nanoGRAVUR Framework to Group (Nano)Materials for Their Occupational, Consumer, Environmental Risks Based on a Harmonized Set of Material Properties, Applied to 34 Case Studies.” Nanoscale 11 (38): 17637–17654. doi:10.1039/c9nr03306h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.